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Wavelet entropy of stochastic processes
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Abstract

We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the

normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano,

Time–frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E

57 (1998) 932–940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Bas-ar, Wavelet

entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65–75] and a

second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71–78]. In order to understand their advantages and

disadvantages, exact results obtained for fractional Gaussian noise (�1oao 1) and fractional Brownian motion

(1oao 3) are assessed. We find out that the NTWS family performs better as a characterization method for these

stochastic processes.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The advantages of projecting an arbitrary continuous stochastic process in a discrete wavelet space are
widely known. The wavelet time–frequency representation does not make any assumptions about signal
stationarity and is capable of detecting dynamic changes due to its localization properties. Unlike the
harmonic base functions of the Fourier analysis, which are precisely localized in frequency but infinitely
extend in time, wavelets are well localized in both time and frequency. Moreover, the computational time is
significantly shorter since the algorithm involves the use of fast wavelet transform in a multi-resolution
framework. Finally, contaminating noise contributions can be easily eliminated when they are concentrated in
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some frequency bands [1,2]. These important reasons justify the introduction, within this special space, of
entropy-based algorithms in order to quantify the degree of order or disorder associated with a multi-
frequency signal response. With the entropy estimated via the wavelet transform, the time evolution of
frequency patterns can be followed with an optimal time–frequency resolution. Several recent papers have
confirmed the effectiveness, relevance and suitability of the wavelet entropy as a quantifier of experimental and
synthetic signals. These include applications to the characterization of brain electrical signals (EEG and EP/
ERP) and neuronal activity [3–14]), solar physics [15,16], erythrocytes deformation [17], laser propagation
throughout turbulent media and other lasers applications [18–20], pseudo-random number generators [21], the
quantum-classical limit [22], and fractional Brownian motion [23].

In this paper we focus on two definitions for this quantifier: the normalized total wavelet entropy (NTWS)
family introduced by one of us (O.A. Rosso) [3,4], and another definition given recently by Tavares and
Lucena [24]. We compare their performances while characterizing two important stochastic processes: the
fractional Brownian motion (fBm) and the fractional Gaussian noise (fGn). They have been employed as
stochastic models in different and heterogeneous scientific fields, like atmospheric turbulence [18,19],
econophysics [25] and coastal dispersion [26]. We will show that the NTWS family gives a better
characterization for both of them.

2. Wavelet quantifiers

2.1. Wavelet energies

The wavelet analysis is one of the most useful tools when dealing with data samples. Any signal can be
decomposed by using a wavelet dyadic discrete family f2j=2cð2j t� kÞg, with j; k 2 Z (the set of integers)—an
orthonormal basis for L2ðRÞ consisting of finite-energy signals—of translations and scaling functions based on
a function c: the mother wavelet [1,2]. In the following, given a stochastic process sðtÞ its associated signal is
assumed to be given by the sampled values S ¼ fsðnÞ; n ¼ 1; . . . ;Mg. Its wavelet expansion has associated
wavelet coefficients given by

CjðkÞ ¼ hS; 2
j=2cð2j t� kÞi, (1)

with j ¼ �N; . . . ;�1, and N ¼ log2 M. The number of coefficients at each resolution level is Nj ¼ 2jM. Note
that this correlation gives information on the signal at scale 2�j and time 2�jk. The set of wavelet coefficients
at level j, fCjðkÞgk, is also a stochastic process where k represents the discrete time variable. It provides a direct
estimation of local energies at different scales. Inspired by the Fourier analysis we define the energy at
resolution level j by

Ej ¼
X

k

E CjðkÞ
�� ��2, (2)

where E stands for the average using some, at first, unknown probability distribution. In the case the set
fCjðkÞgk is proved to be a stationary process the previous equation reads

Ej ¼ NjE CjðkÞ
�� ��2. (3)

Observe that the energy Ej is only a function of the resolution level. Also, under the same assumptions, the
temporal average energy at level j is given by

eEj ¼
1

Nj

X
k

E CjðkÞ
�� ��2 ¼ E CjðkÞ

�� ��2, (4)

where we have used Eq. (3) to arrive to the last step in this equation. Since we are using dyadic discrete
wavelets the number of coefficients decreases over the low frequency bands (at resolution level j the number is
halved with respect to the previous one j þ 1); thus, the latter energy definition reinforces the contribution of
these low frequency bands.
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