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Abstract

A two-dimensional single component two-phase lattice Boltzmann model was used to simulate the Rayleigh–Taylor

instability in a closed system. Spatiotemporally variable densities were generated by gravity acting on the fluid density. The

density fluctuations were triggered by rapid changes in the fluid velocity induced by changes in the interface geometry and

impact of the dense fluid on the rigid lower boundary of the computational domain. The ratio of the maximum density

fluctuations to the maximum fluid velocity increased more rapidly at low velocities than at high velocities. The ratio of the

maximum density fluctuations in the dense phase to its maximum velocity was on the order of the inverse of the sound

speed. The solution became unstable when the density-based maximum local Knudsen number exceeded 0.13.
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1. Introduction

The lattice-Boltzmann (LB) method is a mesoscale simulation technique that lies between microdynamics at
a molecular scale and the macroscopic continuum mechanics of fluids [1–3]. In LB models, the fluid is
represented as an ensemble of particles that synchronously stream along the bonds of a regular lattice and
undergo mass and momentum conserving collisions at the nodes. The microdynamic conservation principles
that govern the collisions ensure the local conservation of mass and momentum, which is essential for the
macroscopic behavior to be consistent with the Navier–Stokes equation. Because the LB method is based on a
microscopic description of fluid dynamics, large-scale hydrodynamics emerges naturally [4], and the interfacial
dynamics in multiphase systems can be simulated more easily by using LB models [5,6] than by using
conventional grid-based Navier–Stokes solvers. In multiphase LB simulations, problems such as interface
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broadening and grid entanglement are avoided; however, the interface is spread over a few lattice nodes. In
this article we focus on the simulation of two-dimensional multiphase flow in a closed system using an LB
model that includes the fluid–fluid interactions proposed by Shan and Chen [6] and the solid–fluid interactions
proposed by Martys and Chen [5]. Macroscopic equations governing the motion of each component in the
Shan–Chen model have been derived [4] using the Chapman–Enskog method [7]. A one-component two-phase
formulation of the Shan–Chen model has been used to simulate bubble growth on, and detachment from,
horizontal and vertical surfaces [8], to study two-phase flow in a two-dimensional homogeneous and regularly
packed synthetic porous system [9], and to simulate interfacial configurations in partially-saturated porous
media [10].

The LB method can be used to simulate single-phase flow governed by the incompressible Navier–Stokes
equation in the limit in which temporal variations in the fluid density are small. The fluid density is related to
the pressure through the square of the sound velocity, cs, and a finite c2s (which is a characteristic of all LB
models) introduces density fluctuations. However, the density fluctuations associated with multiphase flows
are much larger than the density fluctuations associated with the single-phase flows with similar characteristic
velocities, because of the large rates of change in velocity and momentum density when fluid impact on solid
surfaces and/or capillary barriers are overcome leading to Haines jumps [11]. The purpose of this article is to
investigate the relationships between the average density fluctuations in the dense fluid and its spatially-
averaged velocity when the fluids were acted on by gravity with different strengths in a closed system, and to
relate the findings to the velocity of the sound (density) waves before and after the dense fluid contacts the
rigid boundaries of the flow domain.

2. Lattice–Boltzmann method (LBM)

LB models are based on a discrete microscopic population distribution function and the microdynamics of
the LB model with a single relaxation time (BGK) model [12] is described by

f kðxþ ekDt; tþ DtÞ � f kðx; tÞ ¼
f

eq
k ðx; tÞ � f kðx; tÞ

t
, (1)

where f kðx; tÞ is the population density at the lattice node at position x at time t along the velocity vector ek,
f

eq
k is the equilibrium Maxwell–Boltzmann distribution function, t is the relaxation parameter, and Dt is the

time increment. A 2D 9-velocity (D2Q9) model was used in this study. The discrete velocity vector basis for the
D2Q9 model consists of the null vector, four vectors of length unity directed towards the nearest neighbor
nodes, and four vectors of length

p
2 directed towards the next-nearest neighbor nodes. The discrete

equilibrium Maxwell–Boltzmann distribution is approximated by the low-Mach number mass and momentum
conserving expansion [13]:

f
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k ¼ wkr 1þ
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c2s
þ
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2

2c4s
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� �
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where wk is the weight coefficient for the kth vector (4/9 for the null vector, 1
9
for the nearest neighbor vectors

and 1
36
for the next-nearest neighbor vectors). The local macroscopic density and velocity at a lattice site can be

computed from the distribution functions at that site as r ¼
P8

k¼0 f k and ru ¼
P8

k¼0 f kek. With the
equilibrium distribution in Eq. (2), the Navier–Stokes equations can be recovered through a Chapman–Ens-
kog expansion, which shows that the kinematic viscosity of the fluid is n ¼ c2s ðt�

1
2
Þ, and the sound velocity is

cs ¼ 1=
p
3 in lattice units, when Dx ¼ Dt ¼ 1.

First-order phase separation processes can be incorporated into the LBM by modifying the net momentum
at the lattice sites to represent the effects of density dependent fluid–fluid interaction forces. Such interactions
can be simulated by introducing fluid–fluid interactions that involve only neighboring nodes separated by a
distance of jekj (when Dt ¼ 1). The resulting rate of momentum change at each lattice site for a two-phase

ARTICLE IN PRESS
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