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a b s t r a c t

We study a reduced Poisson–Nernst–Planck (PNP) system for a charged spherical solute
immersed in a solvent with multiple ionic or molecular species that are electrostatically
neutralized in the far field. Some of these species are assumed to be in equilibrium.
The concentrations of such species are described by the Boltzmann distributions that are
further linearized. Others are assumed to be reactive, meaning that their concentrations
vanish when in contact with the charged solute.We present both semi-analytical solutions
and numerical iterative solutions to the underlying reduced PNP system, and calculate the
reaction rate for the reactive species. We give a rigorous analysis on the convergence of
our simple iteration algorithm. Our numerical results show the strong dependence of the
reaction rates of the reactive species on the magnitude of its far field concentration as
well as on the ionic strength of all the chemical species. We also find non-monotonicity
of electrostatic potential in certain parameter regimes. The results for the reactive system
and those for the non-reactive system are compared to show the significant differences
between the two cases. Our approach provides a means of solving a PNP system which in
general does not have a closed-form solution even with a special geometrical symmetry.
Our findings can also be used to test other numerical methods in large-scale computational
modeling of electro-diffusion in biological systems.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Concentrations of ionic and molecular species are key quantities in the description of biomolecular processes at
nanometer to submicron scales. For instance, the concentrations of ligands (substrates), receptors (enzymes), and ions
regulate almost all biomolecular and cellular activities. Variations in such concentrations often result from molecular
diffusion, reaction, and production or depletion. As the random motion arising from thermal fluctuations, molecular
diffusion causes the spread of localized signals for intracellular and intercellular communications. Chemical reaction and
enzymatic regulation are also associated with the diffusion, production, and depletion of molecular species. This way,
molecular diffusion and enzyme reaction form a coupled system which is often associated with signal transduction, gene
expression, and metabolism networking.
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Biomolecular diffusion is often driven by an electric field. In such electro-diffusion, the electrostatics can strongly affect
the diffusion which in turn affects the rate of association between molecules such as the binding of a ligand to a receptor;
cf. e.g., Refs. [1,2]. The electric field in a charged biomolecular system is determined not only by target macromolecules but
also by the concentrations of all the charged species, including diffusive ions and small charged molecules.
Mean-field approximations of diffusive molecules or ions are often given by the system of Poisson–Nernst–Planck (PNP)

equations. Such a system describes properly the coupling of electrostatics and diffusion of charged chemical species. The
PNP system is a combination of Nernst–Planck equations and Poisson equation. The Nernst–Planck equations describe the
time evolution of concentrations of chemical species. They are of the form

∂ci
∂t
−∇ · [Di(∇ci + βqici∇ψ)] = 0,

where ci = ci(x, t) is the local concentration of the ith charged molecular or ionic species with charge qi at the spatial point
x at time t , Di the diffusion constant, and β the inverse thermal energy. The Poisson equation, given by

∇ · ε∇ψ = −ρ,

relates the electrostatic potentialψ and the charge densityρ that consists of both fixed andmobile charges, the latter being a
linear combination of all the concentrations ci. Here ε is the product of the dielectric coefficient and the vacuumpermittivity
ε0. (More details of these equations are given in the next section.)
In case of no chemical reaction, the steady-state Nernst–Planck equations lead to the Boltzmann distributions of

concentrations in terms of the electrostatic potential [3]. The Poisson equation then becomes the Poisson–Boltzmann
equation [4–10]. For reactive chemical species, the non-equilibrium charge distributions deviate from the Boltzmann
distribution, and the Poisson equation is needed to determine the electrostatic field. In this case, the PNP system can
then be used to calculate the reaction rate. Such calculations are important, as recent studies have shown that substrate
concentrations affect the reaction rates, a fact that is ignored in the usual Debye–Hückel limiting law [3,11].
The PNP system can be hardly solved analytically, even for the steady-state systemwith a very simple geometry. Themain

difficulty arises from the nonlinear coupling of the electrostatic potential and concentrations of chemical species. Numerical
methods for PNP systems have been developed for simple one-dimensional settings and complex three-dimensionalmodels,
and have been combined with the Brownian dynamics simulations; cf. Refs. [12–21].
In this work, we consider a reduced PNP system for diffusion of ionic or molecular species in a solution in an electric

field induced by charged molecules. The modification from the full PNP system is made by assuming that the concentration
of each non-reactive molecular species is given by the Boltzmann distribution. Such distributions are linearized, mimicking
the Debye–Hückel approximation. The concentration fields to be determined are those of reactive species. We focus on
a spherical, uniformly charged solute particle in a solvent with multiple molecular or ionic species, and only consider the
steady-state of the system.We first derive semi-analytical solutions of the underlying, reduced PNP system.We then present
a simple iterationmethod for numerically solving the systemusing our semi-analytical solution formula. The convergence of
our numerical method is proved. We further calculate numerically the equilibrium concentrations, electrostatic potential,
and the reaction rates of reactive species. We finally compare our result with that of the case of no reactive species. Our
work provides a means of solving a PNP system which in general does not have a closed-form solution even with a special
geometrical symmetry. Our findings can also be used to test other numericalmethods in large-scale computationalmodeling
of electro-diffusion in biological systems.
In Section 2,wedescribe our reduced PNP system. In Section 3,wederive the semi-analytical solution formula andpresent

our numerical scheme for obtaining the solution. In Section 4, we use our formula and scheme to calculate the electrostatic
potential, the molecular or ionic concentrations, and the reaction rates of reactive species. In Section 5, we compare our
results with the case that all the chemical species are non-reactive. Finally, in Section 6, we draw conclusions. In Appendix A,
we give details of our derivation of our semi-analytical solution formulas; in Appendix B, we prove the convergence of our
numerical scheme.

2. Model description

We first describe our reduced Poisson–Nernst–Planck (PNP) system for a general case in which some charged solutes are
immersed in a solvent. There are multiple, diffusive ionic or molecular species in the solvent. Some of them are reactive and
some are not. We then describe our reduced PNP system for a uniformly charged spherical solute in a solvent with multiple
ionic or molecular species.

2.1. The general case

Let Ω denote the entire region of an underlying solvation system. Let Ωm and Ωs denote the solute region and solvent
region, respectively. Let also Γ denote the interface that separates Ωs and Ωm, cf. Fig. 2.1. We shall use the interface Γ as
the dielectric boundary. Let εm and εs denote the dielectric constant of the solute regionΩm and that of the solvent region
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