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a b s t r a c t

We study the freezing transition in the counter flow of pedestrians within the channel
numerically and analytically. We present the mean-field approximation (MFA) model
for the pedestrian counter flow. The model is described in terms of a couple of
nonlinear difference equations. The excluded-volume effect and bi-directionality are taken
into account. The fundamental diagrams (current–density diagrams) are derived. When
pedestrian density is higher than a critical value, the dynamical phase transition occurs
from the free flow to the freezing (stopping) state. The critical density is derived by using
the linear stability analysis. Also, the velocity and current (flow) at the steady state are
derived analytically. The analytical result is consistent with that obtained by the numerical
simulation.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recently, pedestrian and vehicular traffics have attracted considerable attention [1–5]. Many observed dynamical
phenomena in pedestrian and traffic flows have been successfully reproduced with physical methods. The pedestrian flow
dynamics is closely connected with the driven many-particle system [6]. It has also encouraged physicists to study the
evacuation processes by drivenmany-particlemodels [7–13]. The pedestrian and vehicular trafficmodels have been applied
to the traffic flow of such mechanical mobile objects as robots [14,15].
The typical pedestrian flows have been simulated by the use of a few models: the lattice–gas model of biased-random

walkers [11–16], the molecular dynamic model of active walkers [6,10,17], and the cellular automaton model [7,8]. Helbing
et al. have found that the ‘‘freezing by heating’’ occurs in the pedestrian counter flow by the use of the molecular dynamic
model of active walkers [17]. By using the lattice–gas model of biased-random walkers, Muramatsu et al. have found
independently that the jamming (freezing) transition occurs from the free flow to the freezing (stopping) state when the
pedestrian density is higher than the critical value [16]. The jamming transition in the pedestrian counter flow has been
studied by some researchers [18–21].
In the jamming transition, pedestrian flow in the crowd changes from the free traffic to the jammed traffic in which

pedestrians are distributed heterogeneously and move slowly. In the freezing transition, pedestrian flow changes to the
frozen state in which all pedestrians cannot move by preventing from going ahead each other. Thus, the freezing transition
is definitely different from the jamming transition. The similar freezing transition occurs in the two-dimensional traffic
cellular automaton model proposed by Biham, Middleton, and Levine [22,23].
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However, the theoretical analysis for the freezing transition has been little known. The pedestrian flow has been
investigated only by thenumerical simulation of the self-drivenmany-particlemodels. Themean-field approximationmodel
is unknown for the pedestrian flow until now [1–3].
In this paper, we present the mean-field approximation (MFA) model for the pedestrian counter flow. We study

the dynamical phase transition in the MFA model of pedestrian numerically and analytically. We derive the numerical
and analytical solutions to the pedestrian counter flow. We present the fundamental diagram (current–density diagram)
numerically and analytically. We apply the linear stability method to the MFA model. We derive the freezing transition
point analytically. We compare the analytical result with the numerical result.

2. Mean-field approximation model

We consider the counter (bi-directional) flow of pedestrians in the channel. There exist two kinds of walkers within the
channel: the one is the walkers moving to the east and the other the walkers moving to the west. The walker moving to the
east (or west) interacts highly with the other walkers in the front. When the density of walkers ahead is higher, the current
decreases more because the movement of walkers is prevented by other walkers.
We consider the mean-field approximation for the pedestrian counter flow. We approximate the counter flow on the

square lattice as that on one-dimensional lattice because walkers to east or to west move uni-directionally on the average.
We define the probability that a walker to east (to west) exists on site i at time t as pE(i, t) (pW (i, t)). We apply the
conservation law of probability pE(i, t) (pW (i, t)) to the counter flow. The probabilities pE(i, t + 1t) and pW (i, t + 1t)
of a walker to east and a walker to west existing on site i at time t +1t are described by the following:

pE(i, t +1t) = pE(i, t)+
[
pE(i− 1, t)Pt,E(i− 1→ i, t)− pE(i, t)Pt,E(i→ i+ 1, t)

]
1t, (1)

pW (i, t +1t) = pW (i, t)+
[
pW (i+ 1, t)Pt,W (i+ 1→ i, t)− pW (i, t)Pt,W (i→ i− 1, t)

]
1t, (2)

where Pt,E(i→ i+ 1, t) is the hopping probability of walker to east from site i to site i+ 1 at time t and Pt,W (i→ i− 1, t)
is the hopping probability of walker to west from site i to site i − 1 at time t . The second term on the right hand in Eq. (1)
represents the inflow of a walker to east from site i−1 to site i between t and t+1t . The third term represents the outflow
of a walker to east from site i to site i+ 1 between t and t +1t . Similarly, the second and third terms of Eq. (2) represents
the inflow and outflow of a walker to west on site i between t and t +1t .
The excluded-volume effect is represented by the probability that a site is occupied by otherwalkers. Hopping probability

Pt,E(i − 1 → i, t) is proportional to the probability that site i is empty at time t . At a mean-field approximation, we
approximate the hopping probabilities as follow:

Pt,E(i− 1→ i, t) = (1− (pE(i, t)+ pW (i, t))α) ,

Pt,W (i→ i− 1, t) = (1− (pE(i− 1, t)+ pW (i− 1, t))α) . (3)

Here, exponent α describes the dependence of the hopping probability on the pedestrian density. It represents the strength
of the excluded-volume effect. When exponent α is small (large), the dependence of hopping probability on density is high
(small). Exponent α is smaller, the hopping probability is smaller with increasing density.
Eqs. (1)–(3) are a couple of nonlinear difference equations. It is not easy to obtain the analytical solution but possible to

obtain the numerical solution. Also, it is able to derive analytically the velocity and current at a steady state. By applying the
linear stability analysis to the counter flow, one can derive the transition point for the freezing analytically.
We derive the velocity and current at a steady state fromEqs. (1)–(3) analytically. If the freezing transition does not occur,

Eqs. (1)–(3) reduce to the followings at the steady state

pE(i− 1) (1− (pE(i)+ pW (i))α) = pE(i) (1− (pE(i+ 1)+ pW (i+ 1))α) ,

pW (i+ 1) (1− (pE(i)+ pW (i))α) = pW (i) (1− (pE(i− 1)+ pW (i− 1))α) . (4)

In the free flow state at low density, the probabilities are given by the uniform solution. Therefore, the velocity and current
are obtained

vE = vW = 1− (ρE + ρW )α, jE = ρE(1− (ρE + ρW )α), and jW = ρW (1− (ρE + ρW )α), (5)

where vE(W ) is the velocity of walkers to east (to west) and jE(W ) is the current of walkers to east (to west).

3. Simulation result

We carry out the numerical simulation for nonlinear difference equations (1)–(3). The boundaries are periodic. If 1t
equals one, the difference equations do not produce the physical meaning solution but it presents the nontrivial solution
when1t is less than 0.1.When1t ≤ 0.1, the numerical result depends little on the interval1t . The steady state is indepen-
dent on interval1t . We set1t = 0.05. The parallel update is used because our model is not CA but the difference equation.
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