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a b s t r a c t

In this paper, three physical predictions on the phase separation of binary systems are
derived based on a dynamic transition theory developed recently by the authors. First,
the order of phase transitions is precisely determined by the sign of a nondimensional
parameter K such that if K > 0, the transition is first order with latent heat and if K < 0,
the transition is second order. Here the parameter K is defined in terms of the coefficients
in the quadratic and cubic nonlinear terms of the Cahn–Hilliard equation and the typical
length scale of the container. Second, a phase diagram is derived, characterizing the order
of phase transitions, and leading in particular to a prediction that there is only a second-
order transition for molar fraction near 1/2. This is different from the prediction made by
the classical phase diagram. Third, a TL-phase diagram is derived, characterizing the regions
of both homogeneous and separation phases and their transitions.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Materials consisting of two components A and B, such as binary alloys, binary solutions and polymers, are called
binary systems. Sufficient cooling of a binary system may lead to phase separations, i.e., at the critical temperature, the
concentrations of both components A and B with homogeneous distribution undergo changes, leading to heterogeneous
spatial distributions. There have been many studies on this; see among others [1–8].
The main objective of this paper is to precisely describe the phase separation mechanism and to make a few physical

predictions. The main results obtained are based on the rigorous mathematical analysis of the Cahn–Hilliard equation in
Ref. [9]. The study presented here and in Ref. [9] is based on a dynamic transition theory developed recently by the authors.
Our main philosophy of the theory is to search for the full set of transition states, giving a complete characterization on
stability and transition. The set of transition states – physical ‘‘reality’’ – is represented by a local attractor. For equilibrium
phase transition problems, this local attractor may include both equilibria and some transients represented by a homoclinic
orbit. Following this philosophy, the dynamic transition theory is developed to identify the transition states and to classify
them both dynamically and physically [10–12]. Using this theory, a few typical and important equilibrium phase transition
problems are addressed, including the physical vapor transport (PVT) system [13], ferromagnetism [14], binary system
(Cahn–Hilliard equation) [9], and superfluidity of the liquid helium (helium-3 [12], helium-4 [15], and their mixture [16]),
leading to a number of physical predictions.
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As mentioned earlier, this paper focuses on the physical implications of the rigorous mathematical results obtained in
Ref. [9] for the Cahn–Hilliard equation in both general and rectangular domains supplemented with either the Neumann
or the periodic boundary conditions. For simplicity of the presentation, in this paper, we consider only the case where the
spatial domain is a rectangular domain with the Neumann boundary condition. The main mathematical theorems are given
by Theorems 4.1 and 4.2 in Ref. [9], and the physical conclusions in this paper are obtained by carefully examining these two
theorems, and by deriving phase diagrams in different phase planes. The main points presented in this paper are as follows:
First, we give a physical interpretation of these two theorems by introducing a nondimensional parameter K and its

associated dimensional parameter Kd, depending on the coefficients of the quadratic and cubic terms in the Cahn–Hilliard
equation and the typical length scale. The twomathematical theorems are then translated into a precise criteria to determine
the type of phase transitions for the binary system by the sign of the parameter K (or Kd).
Second, we use the Landau mean field theory to make connections of the coefficients in the Cahn–Hilliard equation to

the temperature T and the average molar fraction u0. Using this connection, we are able to derive two precise formulas.
The first one is obtained by solving Kd = 0, and is for the critical length scale Ld in terms of the critical temperature Tc and
u0. By definition of Kd and Theorems 4.1 and 4.2 in Ref. [9], this formula determines the phase transition types. The second
formula is derived by solving the β1 = 0, where β1 is the first eigenvalue of the linearized equation. The resulting formula
characterizes the critical control parameters where the phase transition occurs.
Third, with the above formulas, we are able to derive precise phase diagrams in the Lu0-plane, Tu0-plane, and TL-plane

respectively, leading to Physical Conclusions II and III. Here u0 is mol fraction of the component B in the homogeneous state.
Fourth, we focus in this paper on the case where the spatial domain is a rectangular region, leading to Type-I and Type-II

transitions in the dynamical sense. For general domains, however, it is shown in Ref. [9] that the dynamic transition of the
Cahn–Hilliard equation is generically Type-III (mixed type) in the sense of dynamic classification of phase transitions [9,12].
This leads to either first- or second-order transitions, depending on the initial fluctuations.
Finally, the Cahn–Hilliard model we use is classical, and has been studied by many authors. The model retains only up

to cubic order nonlinear terms, and can be derived by the expansion near the critical points of phase transitions, following
the idea of the Landau mean field theory. It is worth mentioning that the analysis in Ref. [9] and consequently the physical
conclusions given in this paper is valid if we retain more or all the higher order terms in the mean field expansion, and the
results are exactly the same as in Ref. [9] and in this paper. In other words, the main results will still be true if we work on
the logarithmic nonlinearity as given in (2) below. Also, we remark that part of the results in Ref. [9] and in this paper can
be generalized to nonlocal Cahn–Hilliard models, and we shall report this study in a forthcoming article.

2. Cahn–Hilliard equation

Consider a binary system, and let uA and uB be the concentrations of components A and B respectively, then uB = 1− uA.
The Helmholtz free energy is given by

F(u) = F0 +
∫
Ω

[µ
2
|∇uB|2 + f (uB)

]
dx. (1)

Here according to the Hildebrand theory (see Reichl [17,18]), we have

f = µA(1− uB)+ µBu+ RT (1− uB) ln(1− uB)+ RTuB ln uB + auB(1− uB), (2)

whereµA, µB are the chemical potentials of A and B respectively, R is themolar gas constant, a > 0 themeasure of repulsion
action between A and B, and T is the temperature parameter.
In a homogeneous state, uB is a constant in space and is equal to its mean value, i.e., uB = ūB. Let

u = uB − ūB, u0 = ūB.

Using the Landau mean field theory, we have the following Cahn–Hilliard equation

∂u
∂t
= −k∆2u+∆[b1u1 + b2u2 + b3u3], (3)

where the coefficients k, b1, b2 and b3 are given by

k = µD,

b1 =
D
2
d2f (u0)
du2

=

[
RT

u0(1− u0)
− 2a

]
D
2

b2 =
D
3!
d3f (u0)
du3

=
2u0 − 1

6u20(1− u0)2
DRT ,

b3 =
D
4!
d4f (u0)
du4

=
1− 3u0 + 3u20
12u30(1− u0)3

DRT ,

(4)

where D is the diffusion coefficient.
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