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Abstract

The direct integration of the diffraction integral is quite time consuming. Based on the fact that a hard-edge aperture

function can be expanded into finite sum of complex Gaussian functions, a nonparaxial propagation expression for

elliptical Gaussian beams diffracted by a circular aperture is derived using the well-known method of the scalar angular

spectrum and the stationary phase. Simulation shows that when the f-parameter is greater and the truncation parameter

is smaller, the paraxial approximation is invalid and the nonparaxial approach has to be used for apertured elliptical

Gaussian beams. A circular aperture can cause the stigmatic elliptic Gaussian beam diverge in the far field but change

the aspect ratio of the beam. It can also change the shape and intensity distribution of the higher-order Hermite–Gauss-

ian beams due to the obstruction and the interference of beams.
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1. Introduction

The angular spectrum representation has been

used to solve a variety of problem involving

propagation, transmission, and reflection of

Gaussian beams [1]. By using this method, Carter
gave the electromagnetic field of a Gaussian beam

with an elliptical cross-section [2], Agrawal and

Pattanayak obtained the first-order correction of

Gaussian beams [3], and Zeng et al. [4] presented

the far-field expressions for off-axis Gaussian

beams. Chen et al. [5] derived the propagation

equations of vector Gaussian beam by using vec-
tor angular spectrum approach and compared the

validity of paraxial and spherical approximations.

Their results show that spherical approximation

based on the method of stationary phase becomes

more accurate for larger propagation distance.
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However, these earlier studies have been re-

stricted to the unapertured propagation of Gauss-

ian beams. In practice, the aperture effect exists

more or less. Recently, Duan and Lü [6] pre-

sented the nonparaxial analysis of the far-field
properties of circular Gaussian beams diffracted

at a circular aperture. The present paper is aimed

at studying the nonparaxial propagation proper-

ties of elliptical Gaussian beams diffracted by a

circular aperture. In fact, the elliptical Gaussian

beam represents the more general case, and the

circular Gaussian beam can be regarded as its

special case.

2. Analytical expression for apertured elliptical

Gaussian beams

The field of an initial higher-order Hermite–

Gaussian beam at the plane z = 0 is given, in the

Cartesian coordinates systems, by [7]
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where e = w0y/w0x is defined as the ellipticity, w0x

and w0y are the waist widths in the x- and y-

directions, respectively. We assume w0x P w0y

and the beam becomes the circular when e = 1.

Hj is the jth order Hermite polynomial. Assuming
that a circular aperture of radius a is placed at

the plane z = 0, the field just behind the aperture

reads as
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where the window function of the hard-edge aper-
ture is written as

tðx; yÞ ¼ 1 x2 þ y2 6 a2;

0 otherwise:

�
ð3Þ

According to the angular spectrum representation

[1], we can express the field at the z-plane as
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where k is the wave number in vacuum, A(p, q) is

written as
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Since there is no circular symmetry for the ellipti-

cal Gaussian beam but there is one for the window

function, we are unable to obtain the analytical
result by integrating Eqs. (4) and (5) directly. In

order to give the analytical expression of the

propagation field, we first expand the hard-edge

aperture function as the sum of complex Gaussian

functions with finite terms
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where the complex constants Bj and Cj are the

expansion and Gaussian coefficients, respectively,

which can be obtained by optimization computa-

tion directly [8].

Inserting Eq. (7) into (5) and using the follow-
ing integral formula [9]:
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