
Diffusion of optical pulses in dispersion-shifted
randomly birefringent optical fibers

Pavel M. Lushnikov *

Los Alamos National Laboratory, Theoretical Division, MS-B213, Los Alamos, NM 87545, USA

Landau Institute for Theoretical Physics, Kosygin St., 2, Moscow 119334, Russia

Received 4 August 2004; received in revised form 30 September 2004; accepted 7 October 2004

Abstract

An effect of polarization-mode dispersion, nonlinearity and random variation of dispersion along an optical fiber on

a pulse propagation in a randomly birefringent dispersion-shifted optical fiber with zero average dispersion is studied.

An averaged pulse width is shown analytically to diffuse with propagation distance for arbitrary strong pulse amplitude.

It is found that optical fiber nonlinearity can not change qualitatively a diffusion of pulse width but can only modify a

diffusion law which means that a root mean square pulse width grows at least as a linear function of the propagation

distance.
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Polarization-mode dispersion (PMD), which is

a pulse broadening caused by random variation

of optical fiber birefringence, has recently become

a major drawback in the development of new high-

bit-rate optical communication systems [1–7]. An-

other effect, which limits bit-rate capacity, is pulse

broadening caused by group-velocity dispersion
(GVD). Use of a dispersion-shifted fiber with zero

average GVD can reduce this effect, however, in

such fibers GVD inevitably fluctuates around zero

along the propagation direction [8,9] and hence

pulse broadening still occurs [10,11]. Nonlinearity

in optical fibers results in the coupling of both

PMD and GVD effects, so in general they can

not be studied separately in contrast to linear case.

Linear PMD was first studied in [1,4,5] while non-
linear PMD was addressed in numerical experi-

ments [2] and analytical studies based on a

perturbation expansions around soliton solutions

of deterministic equations [3,12–15]. An effect of

random variation of GVD was studied in
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[10,11,16–18]. Here, an exact analytical (nonper-

turbartive) theory is developed for the case of fiber

with random birefringence and random GVD with

zero mean and arbitrarily strong nonlinearity

(arbitrary pulse amplitude). No assumption like
closeness to any type of soliton solution is neces-

sary for the results of this Article to be valid.

The main result is that a statistical average (over

random variation of fiber parameters) of root

mean square pulse width TRMS grows with dis-

tance at least as a linear function of propagation

distance. This means that random diffusion of

optical pulse width can not be prevented by an
arbitrarily strong nonlinearity. It is shown that

random diffusion fundamentally limits the bit-rate

capacity of an optical fiber.

Neglecting second-order GVD (dispersion

slope) effects, stimulated Raman scattering and

Brillouin scattering, the propagation of optical

pulses in birefringent optical fibers is described

by the two-component vector nonlinear Schrödin-
ger equation (VNLS) [19,3,20,14]
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where z is the propagation distance along an opti-

cal fiber, g1 and g2 correspond to the complex

amplitudes of two orthogonal linear polarizations,

t ” s � z/cl is the retarded time and s is the physical
time, cl is the speed of light, and d(z) is the disper-
sion, which is related to first-order GVD b2 as

dðzÞ ¼ �1
2
b2ðzÞ. The right hand side (r.h.s.) of Eq.

(1) describes linear losses and amplifiers

GðzÞ � �cþ ½expðzacÞ � 1�RN
k¼1dðz� zkÞ

� �
;

r = (2pn2)/(k0Aeff) is the nonlinear coefficient, n2 is

the nonlinear refractive index, k0 = 1.55 lm is the

carrier wavelength, Aeff is the effective fiber area,

zk = kza (k = 1, . . .,N) are the amplifier locations,

za is the amplifier spacing, and c is the loss coeffi-

cient. Distributed amplification can be also in-
cluded by adding z-dependence into c. Properties
of fiber can be different along optical line, e.g., Aeff

could be different if line consists of several pieces

of fiber with different cross section, and, respec-

tively, coefficient r generally depends on z. In a

similar way, all parameters of fiber, like d(z) also

depend on z.

The self-conjugated matrices D̂ðzÞ and ~̂mðzÞ de-
scribe, respectively, the differences in wave vectors

and the anisotropy of the group velocities of the
two modes corresponding to the two different

polarizations. Both matrces D̂ and ~̂m are made

traceless. The trace of the matrix D̂ is excluded

by a phase transformation ~g ! g expði/0zÞ. The

trace of the matrix ~̂m is zero because Eq. (3) is writ-

ten in a frame moving with average group velocity

(note that group velocity is generally z-dependent).

It is assumed in Eq. (3) that the dispersion d(z) and
nonlinearity are isotropic because their anisotropy

is usually negligible in optical fibers. Vector
~N ¼ ð~N 1; ~N 2ÞT, which represents the contribution

of Kerr nonlinearity, is given by
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see [19,3].

The change of variables n ¼ ge�
R z

0
Gðz0Þ dz0

(see

e.g. [21,22]) removes r.h.s. of Eq. (1) and gives
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~mabðzÞotnb

þ dðzÞo2t na þ cðzÞ~N aðnÞ ¼ 0; ð3Þ

where cðzÞ � rðzÞ expð2
R z
0
Gðz0Þdz0Þ. Thus, all lin-

ear fiber losses and amplifications are included into
coefficient c(z).

The isotropic case, which corresponds to zero

matrices D̂ ¼ ~̂m ¼ 0̂, allows a solution of Eq. (3)

with constant polarization, e.g., n1 6¼ 0, n2 = 0.

Components of matrices D̂ and ~̂m fluctuate

strongly as functions of distance z. Fluctuations

correspond to violation of circular symmetry of

the fiber. The matrices D̂ and ~̂m change in optical
fibers with time on a scale of few hours because

of environmental fluctuations, however, for typical

optical pulse duration (10 ps), one can consider

D̂ and ~̂m as functions of z only. It means that dis-

order is frozen in the fiber. The matrix D̂ gives the

leading order contribution in Eq. (3) because a

typical beat length zbeat (typical length at which a

relative phase shift between two polarizations
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