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Abstract

The thermal entanglement in a two-qubit Spin-1 system with two spins coupled by exchange interaction is investi-

gated in terms of the measure of entanglement called ‘‘negativity’’. It is found that the thermal entanglement exists and

is symmetric for both ferromagnetic and antiferromagnetic exchange couplings. Moreover, the critical temperature at

which the negativity vanishes increases with the exchange coupling constant J. From the temperature and magnetic field

dependences we demonstrate that the temperature and the magnetic field can affect the feature of the thermal entangle-

ment significantly.
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Entanglement as a key concept in quantum
information processing (QIP) [1–3] has attracted

a lot of attention both experimentally and theoret-

ically in recent years [4]. Since the entanglement is

fragile, the problem of how to create stable entan-

glement remains a main focus of recent studies in

the field of quantum information processing. The

thermal entanglement, which differs from the other

kinds of entanglements by its advantages of stabil-

ity for the reduction in entanglement of an entan-
gled state due to various sources of decoherence

and in entanglement in time due to thermal inter-

actions are absent as the entanglement at finite

temperature takes thermal decoherence into ac-

count implicitly, requires neither measurement

nor controlled switching of interactions in the pre-

paring process, and hence becomes an important

quantity of systems for the purpose of quantum
computing.

The system of atoms in optical lattices is among

the promising candidates for quantum informa-

tion processing. It may take the advantage of the
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technology used in atom optics and laser cooling

based on the optical manipulation of atoms [5].

Besides, it also holds the merit of eventual possibil-

ity to scale, parallelize and miniaturize the device

in QIP.
The thermal entanglement has been extensively

studied for various systems including isotropic [6–

9] and anisotropic [10] Heisenberg chains, Ising

model in an arbitrarily directed magnetic field

[11], and cavity-QED [12] since the seminal works

by Arnesen et al. [6] and Nielsen [13]. Based on the

method developed in the context of quantum

information, the relaxation of a quantum system
towards the thermal equilibrium is investigated

[14] and provides us an alternative mechanism to

model the spin systems of the Spin-1
2
case for the

approaching of the thermal entangled states [6–

10]. The development of laser cooling and trapping

provides us more ways to control the atoms in

traps. Indeed, we can manipulate the atom-atom

coupling constants and the atom number in each
lattice well with a very well accuracy [15,16]. Our

system consists of two wells in the optical lattice

with one Spin-1 atom in each well. The lattice

may be formed by three orthogonal laser beam,

and we may use an effective Hamiltonian of the

Bose–Hubbard form [17] to describe the system.

The atoms in the Mott regime make sure that each

well contains only one atom. For finite but small
hopping term t, we can expand the Hamiltonian

into powers of t and get [16]

H ¼ �þ JðS1 � S2Þ þ KðS1 � S2Þ2; ð1Þ
where J = �2t2/U2, K = �2t2/3U2 � 4t2/U0 with t

the hopping matrix elements, and � = J�K Æ
Us(s = 0,2) represents the Hubbard repulsion

potential with total spin s, a potential Us with

s = 1 is not allowed due to the identity of the bo-

sons with one orbital state per well, since term �
contains no interaction, we can ignore it in the fol-

lowing discussions and it would not change the
thermal entanglement. For simplification, J � K

is assumed and the nonlinear couplings is ignored.

So the Hamiltonian Eq. (1) becomes

H ¼ JðS1 � S2Þ: ð2Þ

We begin with the two-qubit model in the absence

of the external magnetic field

H ¼ JðSx
1S

x
2 þ Sy

1S
y
2Þ; ð3Þ

in which the neglected exchange coupling term

along the z-axis is assumed to be much smaller

than the coupling in the x–y plane. Where Sa

(a = x,y) are the spin operator, J is the strength

of Heisenberg interaction. With the help of raising
and lowering operators S�

n ¼ Sx
n � iSy

n, the Hamil-

tonian H is rewritten as

H ¼ J
2
ðSþ

1 S
�
2 þ S�

1 S
þ
2 Þ: ð4Þ

To evaluate the thermal entanglement we first of

all find the eigenvalues and the corresponding

eigenstates of the Hamiltonian Eq. (4) which are

seen to be

H j1; 1i ¼ 0;H j � 1;�1i ¼ 0;

H jW1i ¼ 0;H jW�
2 i ¼ �J

2
jW�

2 i;

H jW�
3 i ¼ �J

2
jW�

3 i; H jW�
4 i ¼ � Jffiffi

2
p jW�

4 i; ð5Þ

where

jW1i ¼ 1ffiffi
2

p ðj1;�1i � j � 1; 1iÞ;

jW�
2 i ¼ 1ffiffi

2
p ðj0;�1i � j � 1; 0iÞ;

jW�
3 i ¼ 1ffiffi

2
p ðj1; 0i � j0; 1iÞ;

jW�
4 i ¼ 1ffiffi

2
p j � 1; 1i � j0; 0i þ 1ffiffi

2
p j1;�1iÞ: ð6Þ

The density operator at thermal equilibrium

q(T) = exp(�bH)/Z, where Z = Tr[exp(�bH)] is

the partition function and b = 1/kBT (kB is Boltz-

mann�s constant being set to be unit kB = 1 hereaf-
ter for the sake of simplicity), can be expressed in

terms of the eigenstates and the corresponding

eigenvalues as

qðT Þ ¼ 1
ZfjW1ihW1j þ j � 1;�1ih�1;�1j þ j1;1ih1;1j
þ exp½m�jWþ

2 ihWþ
2 j þ exp½�m�jW�

2 ihW�
2 j

þ exp½m�jWþ
3 ihWþ

3 j þ exp½�m�jW�
3 ihW�

3 j

þ exp½
ffiffiffi
2

p
m�jWþ

4 ihWþ
4 j þ exp½�

ffiffiffi
2

p
m�

� jW�
4 ihW�

4 jg; ð7Þ

with the partition function seeing to be

Z ¼ 3þ 4 cos h½m� þ 4 cos h½
ffiffiffi
2

p
m� and m = J/2T.
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