

Contents lists available at ScienceDirect

Physica A

The estimates of correlations in two-dimensional Ising model

Jun Wang*

Department of Mathematics, College of Science, Beijing Jiaotong University, Beijing 100044, PR China

ARTICLE INFO

Article history:
Received 11 August 2008
Received in revised form 5 November 2008
Available online 24 November 2008

PACS: 02.50.-r 05.50.+q 05.70.jk

Keywords: Stochastic Ising model Gibbs measure Surface tension Correlation Boundary condition

ABSTRACT

We investigate the correlation inequalities and the decay of correlations of stochastic Ising model in a rectangle with side length $2L \times K(L \ln L)^{1/2}$, where K is some positive constant. With different boundary conditions, at inverse temperature $\beta > \beta_c$ or $\beta < \beta_c$ and zero external field, we show some estimates of the correlation functions for the two-dimensional Ising model.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the two-dimensional lattice Ising model (see Refs. [1–4]) on the rectangle $\Lambda_{L,M}$, where $\Lambda_{L,M} = [-L,L] \times [-M,M] \subset \mathbb{Z}^2$ and $M = K(L \ln L)^{1/2}$, K is some positive constant. With some different boundary conditions, at inverse temperature $\beta > \beta_c$ or $\beta < \beta_c$ and zero external field, the statistical properties of the correlation functions for the two-dimensional Ising model are investigated. The spin of the Ising model takes the spin value +1 or spin value -1, and it flips between the two orientations. At sufficiently low temperatures, we have known that the model exhibits phase transition, i.e., there is a critical point $\beta_c > 0$, if $\beta > \beta_c$, the Ising model exhibits phase transition. Correlations are related to the phase transition and the spin fluctuations of the model. As β increases (from 0), the correlations begin to extend, these correlations take the form of spin fluctuations, which are islands of a few spins each that mostly point in the same direction. As β approaches the critical inverse temperature β_c from below, spin fluctuations are present at all scales of length. At $\beta = \beta_c$, the correlations decay by a power law, but for $\beta > \beta_c$, there are two distinct pure phases. Correlations play an important role in studying the fluctuations of the phase interfaces for the statistical physics model, see Refs. [2, 4–10]. When $\beta \gg \beta_c$, by applying the theory of the cluster expansion, the fluctuations of the interfaces between the plus and minus phases can be controlled, from the normal ones occurring on scale $L^{\frac{1}{2}}$ to the large ones on scale L, see Ref. [2]. For β close to the critical value β_c , we are still unable to have such a result. So, for $\beta > \beta_c$, we estimate the correlations of the Ising model are also discussed in Theorem 3.

Let \mathbb{Z}^2 be a square lattice, an element u of which is a pair of integers (u_1, u_2) . For any finite subset $\Lambda \subset \mathbb{Z}^2$, let $\Omega_{\Lambda} = \{-1, +1\}^{\Lambda}$ denote the space of spin configurations on Λ , an element of Ω_{Λ} usually denoted $\xi_{\Lambda} = \{\xi(u) : u \in \Lambda\}$,

^{*} Fax: +86 1051682867. E-mail address: wangjun@bjtu.edu.cn.

whenever confusion does not arise, we will also omit the subscript Λ in the notation ξ_{Λ} . We consider a standard Ising model with the following system of Hamiltonians

$$H_{\Lambda}^{\eta}(\xi) = -\frac{1}{2} \sum_{\substack{u,v \in \Lambda \\ |u-v|=1}} \xi(u)\xi(v) - \sum_{\substack{u \in \Lambda, v \notin \Lambda \\ |v-v|=1}} \xi(u)\eta(v)$$
(1)

for every $\xi \in \Omega_{\Lambda}$, where $|\cdot|$ stands for the Euclidean distance and $\eta \in \{-1,0,+1\}^{\mathbb{Z}^2}$ denotes the boundary condition. If we set $\eta(u)=+1$ for all $u\in\mathbb{Z}^2$, the boundary condition is called the plus boundary condition, if $\eta(u)=-1$ for all u, then the resulting boundary condition is called the minus boundary condition, and if $\eta(u) = 0$ for all u, then we call the resulting boundary condition the free boundary condition. The corresponding Hamiltonians are denoted by H_{Λ}^+ , H_{Λ}^- and H_{Λ}^{\emptyset} respectively. The finite Gibbs state $\mu_{\Lambda}^{\beta,\eta}$ at inverse temperature β is a probability measure on Ω_{Λ} given by

$$\mu_{\Lambda}^{\beta,\eta}(\xi) = [Z_{\Lambda}^{\beta,\eta}]^{-1} \exp[-\beta H_{\Lambda}^{\eta}(\xi)]$$

where $Z_{\Lambda}^{\beta,\eta}$ is called the partition function and is given by $Z_{\Lambda}^{\beta,\eta} = \sum_{\xi \in \Omega_{\Lambda}} \exp[-\beta H_{\Lambda}^{\eta}(\xi)]$. The interesting case is that β is greater than the critical value β_c . In this case, the Gibbs measures μ_{Λ}^+ and μ_{Λ}^- (corresponding to + and - boundary conditions respectively) will converge to different limits μ^+ and μ^- as Λ expands to the whole plane \mathbb{Z}^2 , see Refs. [1,3,4]. A stochastic Ising model on Λ with boundary condition η is a continuous time Markov chain on Ω_{Λ} , whose generator is of the following form

$$(A_{\Lambda}^{\beta,\eta}f)(\xi) = \sum_{u \in \Lambda} c^{\eta}(u,\xi)[f(\xi^{u}) - f(\xi)]$$
 (2)

acting on $L^2(\Omega_\Lambda, d\mu_\Lambda^{\beta,\eta})$, where $\xi^u(v) = +\xi(v)$, if $v \neq u$ and $\xi^u(v) = -\xi(v)$, if v = u. $c^{\eta}(u, \xi)$ is the transition rates for the process, satisfying nearest neighbor interactions, attractivity, boundedness and detailed balance condition $c(u, \xi)^{\eta} \mu_{\Lambda}^{\beta, \eta}(\xi) = c(u, \xi^{u})^{\eta} \mu_{\Lambda}^{\beta, \eta}(\xi^{u}), \text{ see [1]}.$

2. Notations and definitions

Let \mathbb{Z}^2_* be the dual lattice of \mathbb{Z}^2 , i.e., $\mathbb{Z}^2_* = \mathbb{Z}^2 + (1/2, 1/2)$. For $u, v \in \mathbb{R}^2$, let [u, v] be the closed segment with u, v as its endpoints. The edges of $\mathbb{Z}^2(\mathbb{Z}^2_*)$ are those e = [u, v] with u, v nearest neighbors in $\mathbb{Z}^2(\mathbb{Z}^2_*)$. Given an edge e of \mathbb{Z}^2 , e^* is the unique edge in \mathbb{Z}^2_* that intersects e. We denote by \mathbb{B}_{Λ} the set of edges such that both the endpoints are in Λ and by $\bar{\mathbb{B}}_{\Lambda}$ the set of all edges with at least one endpoint in Λ . Given $\Lambda \subset \mathbb{Z}^2$, we let $\Lambda^c = \mathbb{Z}^2 \setminus \Lambda$ and define Λ^* as the set of all $u \in \mathbb{Z}^2_*$ such that $d(u, \Lambda) = \frac{1}{\sqrt{2}}$, where $d(u, \Lambda) = \inf\{|u - v| : v \in \Lambda\}$. The set of the dual edges is defined as $\mathbb{B}^*_{\Lambda} = \{e^* : e \in \overline{\mathbb{B}}_{\Lambda}\}$. The interior and exterior boundaries of Λ are defined by

$$\partial_{\text{int}} \Lambda \equiv \{ u \in \Lambda : \exists v \notin \Lambda, |u - v| = 1 \}, \qquad \partial_{\text{ext}} \Lambda \equiv \{ u \notin \Lambda : \exists v \in \Lambda, |u - v| = 1 \}$$

and $\partial_{\text{int}} \Lambda^*$, $\partial_{\text{ext}} \Lambda^*$ are defined in a similar way. For simplicity, we call an edge in \mathbb{Z}^2_* a bond, so that we can distinguish it from the edges in \mathbb{Z}^2 . We say that a neighboring pair u and v in \mathbb{Z}^2 are separated by a bond e^* if the edge e = [u, v] intersects e^* . Let $\Lambda \subset \mathbb{Z}^2$ and $\eta \in \{-1, 0, +1\}^{\mathbb{Z}^2}$ be fixed, for every configuration $\xi \in \Omega_{\Lambda}$, we denote by $\Gamma(\xi)$ the collection of all bonds separating neighboring sites u and vsuch that: (i) $u, v \in \Lambda$, and $\xi(u)\xi(v) = -1$ or (ii) $u \in \Lambda$, $v \in \partial_{\text{ext}} \Lambda$ and $\xi(u)\eta(v) = -1$. We divide $\Gamma(\xi)$ into connected components. Further we use the convention that any pair of orthogonal bonds that intersect in a given site u* of the dual lattice \mathbb{Z}_*^2 are a linked pair of bonds iff they are both on the same side of the forty-five degrees line across u^* , then we regard that two linked pairs at u^* are not connected at u^* . By this convention, each connected component of $\Gamma(\xi)$, say Γ , has the following properties: (1) if $u^* \in \Lambda^* \setminus \partial_{\text{int}} \Lambda^*$, then the number of bonds in Γ that intersect u^* is always even; (2) bonds in Γ can be ordered as $e_0^*, e_1^*, \dots, e_n^*$, so that e_i^* and e_{i+1}^* have a common vertex for every i, and if Γ has a point u^* at which 4 bonds in Γ which intersect u^* , then there are $i \neq j$ such that these 4 bonds are divided into two linked pairs $\{e_i^*, e_{i+1}^*\}$ and $\{e_i^*, e_{i+1}^*\}$. We call these components of $\Gamma(\xi)$ contours in ξ (with boundary condition η). If for any $u^* \in \mathbb{Z}_*^2$, the number of bonds in the contour Γ which intersect u^* is even, then we call Γ a closed contour. A contour which is not closed is called an open contour. The length $|\Gamma|$ of a contour is simply the number of bonds in Γ .

When Λ is a rectangle $\Lambda = \Lambda_{L,M}$, we define [h] boundary condition by

$$[h](u) = \begin{cases} -1, & \text{if } u_2 \ge M - h + 1 \\ +1, & \text{if } u_2 \le M - h \end{cases}$$
 (3)

for $u=(u_1,u_2)\in\mathbb{Z}^2$. So in particular, [0] boundary condition means -1 on the top side of the rectangle and +1 on the remaining three sides. Let $\Gamma_{\Lambda}^{[h]}(\xi)$ denote the unique open contour produced by a configuration ξ . Now we give the notations and the fundamental results of the surface tension, for the details see Refs. [2,8]. We denote

by $\tau_{\theta}(\theta)$ the surface tension at angle θ , which measures the free energy of an interface in the direction orthogonal to the

Download English Version:

https://daneshyari.com/en/article/978654

Download Persian Version:

https://daneshyari.com/article/978654

<u>Daneshyari.com</u>