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Abstract

A novel order parameter F for spin glasses is defined based on topological criteria and with a clear physical

interpretation. F is first investigated for well known magnetic systems and then applied to the Edwards–Anderson �J

model on a square lattice, comparing its properties with the usual q order parameter. Finite size scaling procedures are

performed. Results and analyses based on F confirm a zero temperature phase transition and allow to identify the low

temperature phase. The advantages of F are brought out and its physical meaning is established.
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1. Introduction

Despite over three decades of intensive work, the nature of the low temperature phase of two-dimensional
Edwards–Anderson (EA) [1] model for spin glasses remains controversial. It is agreed that a phase transition
occurs at zero temperature for a Gaussian distribution of bonds (GD) [2–5]. Similarly, for a symmetric �J

distribution or bimodal distribution (BD) of bonds, very convincing numerical evidence has been found that
there is no transition at finite temperature [5–11]. In most of these references, the authors do not use an order
parameter for characterizing the phase transition. On the other hand, data arising from other contributions,
which are based on the behavior of a standard overlapping order parameter, support the existence of a finite
critical temperature [12–14].

In this context, the main purposes of this paper are the following: (a) to show that the disagreement pointed
out in previous paragraph is related to the non-zero overlap of site-order parameters obtained for quite
distinct energy valleys; (b) to overcome this situation by proposing here a novel order parameter F, which is
quite drastic to characterize phases but still is general enough to coincide with usual descriptions
of ferromagnetic (F) and antiferromagnetic (AF) systems; (c) to apply F to do a scaling analysis for
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two-dimensional EA systems including Binder cumulant [15]; (d) to confirm the assumption of the zero-
temperature phase transition for two-dimensional BD, thus reinforcing this result obtained by previously
quoted authors; and (e) to give a physical meaning to this finding by using the grounds on which F is
based on.

The present work is organized as it follows. In Section 2, we introduce the model and define a novel order
parameter, F, very useful for spin glasses and other frustrated systems. Results of the simulation are presented
in Section 3. Finally, our conclusions are drawn in Section 4.

2. Model and basic definitions

Let us begin by very briefly introducing the system under study. Ising spin si occupies ith site of a two
dimensional (square for simplicity) lattice. The interaction with the spin at site j is mediated by exchange
interaction Jij . In the absence of magnetic field (which is the case for the scope of the present paper) the
Hamiltonian of such system can then be written as

H ¼
X

hi;ji

Jijsisj , (1)

where interactions fJijg are restricted to nearest neighbor couplings. In the F Ising model, Jij ¼ �J 8hi; ji.
For the EA model, we will consider half of the bonds F, while the other half will be described by AF
bonds of the same magnitude, namely, Jij ¼ þJ (J40). A sample is one of the possible random dis-
tributions of these mixed bonds. For simplicity spins take values sj ¼ �1, which can be equally denoted by
their signs.

Now, let us consider a configuration a defined by a collection of ordered spin orientations fsaj g.
The usual EA order parameter q is built up by means of overlaps between two configurations a and b and
takes the form

qab ¼
1

N

XN

j¼1

saj s
b
j , (2)

where N (� L� L) is the total number of spins.
For models in which the ground state is non degenerate after breaking ergodicity, such as the pure F case,

the distribution of qab values for the ground manifold (T ¼ 0) is trivial and it is given by delta functions at
qab ¼ 1:0 and qab ¼ �1:0. This also happens in general for all systems with non-degenerate ground level. But
this also applies to GD, where local fields have all different values at different sites, leading to a true minimum
energy for just one pair of opposite ground states. However, for the BD the local field assumes a few discrete
values only, which necessarily means highly degenerate ground manifolds leading to jqabjo1:0, for a large
number of possible pairs of ground states. This distribution will have two broad symmetric maxima but it will
not vanish in the intermediate region [13].

On the other hand, a more detailed description based on a topological picture of the ground state of BD was
presented [16,17]. This framework allows us to define a state function with a clear physical meaning, which is a
good candidate to be a new order parameter for a phase transition. In fact, it has been reported an important
feature of the ground state, namely, at T ¼ 0 there exist clusters of solidary spins (CSS) preserving the
magnetic memory of the system (solidary spins maintain their relative orientation for all states of the ground
manifold) [18]. The main idea of this work is to characterize the nature of the low temperature phase through
the CSS.

Let us consider a particular sample of any given size N. We denote by Gk any of the n CSS of the sample (k
runs from 1 to n). Calculations begin recognizing all of the CSS of each sample belonging to a set of 2000
randomly generated samples of each size. This process is closely related to finding the so-called ‘‘diluted
lattice’’ that prevails after removing all frustrated bonds [19], so the algorithms designed for that purpose can
also be used here.

Let us first pick any arbitrary ground state configuration denoted by an asterisk (�) fixing one of the
possible relative orientations of the CSS, thus becoming a reference configuration. Then a local overlap
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