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Random walk, cluster growth, and the morphology
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Abstract

We propose a new model of cluster growth according to which the probability that a new unit is placed in a point at a

distance r from the city center is a Gaussian with mean equal to the cluster radius and variance proportional to the mean,

modulated by the local density rðrÞ. The model is analytically solvable in d ¼ 2 dimensions, where the density profile varies

as a complementary error function. The model reproduces experimental observations relative to the morphology of cities,

determined via an original analysis of digital maps with a very high spatial resolution, and helps understanding the

emergence of vehicular traffic.
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1. Introduction

Important problems related to cluster growth processes occur in a number of different disciplines, ranging
from physics to biology and transportation engineering, and several microscopic models have been proposed
to describe the growth of both compact clusters, like crystals or tumors [1,2], and fractal clusters, like colloidal
aggregates or snowflakes [3]. All of these models are characterized by the presence of an ‘active’ zone on the
surface of the cluster where the cluster growth takes place. Despite the simplicity which characterizes the
microscopic dynamics of these cluster growth models, analytical solutions for the temporal evolution and for
the spatial dependency of cluster properties, like the density profile or the width of the active zone, are difficult
to obtain. To this end one usually resorts to models for the evolution of the cluster surface, such as the
Kardar–Parisi–Zhang model [4], or to extensive numerical simulations [5–7].

These numerical simulations have suggested that, at least in the case of the Eden Model and of the DLA
model, the radially averaged probability Pðr;NÞdr that the ðN þ 1Þth cluster unit is deposited within a shell of
width dr at a distance r from the center of mass of the cluster is well approximated for r and N large by a
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Gaussian distribution,
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with mean rN / Nn and variance s / Nn0 ; the scaling exponents n and n0 are model dependent. This growth
probability distribution leads to a density profile rðr;NÞ of a cluster of size N in d dimensions,

rðr;NÞ ¼
1

Sdrd�1

Z N

0

Pðr;N 0ÞdN 0 , (2)

where Sd is the surface area of the d dimensional unit sphere (S2 ¼ 2p, S3 ¼ p), which can be evaluated in the
limit N !1 and r large [5]: rðr;N ¼ 1Þ / r�dþ1=n.

Starting from Eq. (1) and from some considerations about the asymptotic behavior of Pðr;NÞ in the r! 0
and r!1 limits, in this paper we elaborate a new model for the growth of compact clusters, the random
walk growth model (RWG). This is based on the simple idea that the cluster radius grows as a random walker
subject to a drift, which gives a growing probability distribution PRWGðr;NÞ / rd�1Pðr;NÞ. We solve the
model in d ¼ 2 dimensions, showing that the density profile varies as a complementary error function. As an
application of the proposed model we have studied the morphology of several European cities, which are
growing clusters. Via an original analysis of digital maps with a very high resolution [8] we have determined
the spatial dependence of their density of streets rsðrÞ, which appears to be very well described by the RWG
model.

2. The random walk cluster growth model

In a large number of cluster growth models (DLA, Eden, Solid-on-solid, Random Deposition, . . .), a cluster
grows as a new cluster unit is placed near an existing one. Therefore, in order for a cluster to grow in a given
location ~r, at least a cluster unit must be present near ~r. In this respect, it is surprising that the growth
probability of Eq. (1) depends on the cluster density rðr;NÞ only through rN and sN ; instead, one would
have expected the radially averaged probability of placing a cluster unit in a shell at a distance r from the
cluster center to be proportional to the number of cluster units which occupy the shell, i.e., Pðr;NÞ /
rðr;NÞd�1 / rDf�1, where Df ¼ 1=n is the fractal dimension of the cluster.

We want also to point out that if Pðr;NÞ / rDf�1, then Eq. (2) predicts the cluster density to diverge as
rðrÞ / rDf�d when r! 0. We therefore expect a crossover in Pðr;NÞ which must be proportional to rd�1 when
r! 0, and proportional to rDf�1 when r!1.

Inspired by Eq. (1) and keeping in mind the above considerations, here we define a new model for the
growth of compact clusters, where no crossover in the radial growing probability is expected as Df ¼ d, which
gives rise to a growing probability distribution PRWGðr;NÞ / rd�1Pðr;NÞ. The model is defined by assuming
(1) that the cluster mass N is related to the mean cluster radius rN by N ¼ ðrN=r0Þ

d in d spatial dimensions; and
(2) that the radius of the cluster evolves as a random walker subject to a drift: at each updating step the radius
varies of a quantity taken from a distribution with mean v40 (drift velocity) and variance s2.

Under these assumptions the radially averaged probability PRWGðr;NÞdr that the ðN þ 1Þth cluster unit is
deposited within a shell of width dr at a distance r from the center of mass of the cluster is

PRWGðr;NÞ ¼
rk

mðkÞN

Pðr;NÞ , (3)

where Pðr;NÞ is given in Eq. (1), mk
N ¼

R1
0 dr rkPðr;NÞ and we assume k ¼ d � 1 as discussed above. The

growth dynamics sets n ¼ 1=d and n0 ¼ n=2 ¼ 1=2d. Note that for kod � 1 the cluster density diverges when
r! 0, while for k4d � 1 it does not decrease monotonically, and has a maximum at r40.

We restrict our analysis to d ¼ 2 dimensions, which is the more interesting case from a physical viewpoint,
but an analytical treatment is also possible for d ¼ 3.
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