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Abstract

We show an interesting connection between non-standard (non-Boltzmannian) distribution

functions arising in the theory of violent relaxation for collisionless stellar systems [D. Lynden-

Bell, Mon. Not. R. Astron. Soc. 136 (1967) 101.] and the notion of superstatistics recently

introduced by [Beck and Cohen Physica A 322 (2003) 267]. The common link between these

two theories is the emergence of coarse-grained distributions arising out of fine-grained

distributions. The coarse-grained distribution functions are written as a superposition of

Boltzmann factors weighted by a non-universal function. Even more general distributions can

arise in case of incomplete violent relaxation (non-ergodicity). They are stable stationary

solutions of the Vlasov equation. We also discuss analogies and differences between

the statistical equilibrium state of a multi-components self-gravitating system and the

metaequilibrium (or quasi-equilibrium) states of a collisionless stellar system. Finally, we

stress the important distinction between entropies, generalized entropies, relative entropies

andH-functions. We discuss applications of these ideas in two-dimensional turbulence and for

other systems with long-range interactions.
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1. Introduction

Recently, several researchers have questioned the ‘‘universality’’ of the Boltzmann
distribution in physics. This problem goes back to Einstein himself who did
not accept Boltzmann’s principle S ¼ k lnW on a general scope because he
argued that the statistics of a system ðW Þ should follow from its dynamics and
cannot have a universal expression [1,2]. In 1988, Tsallis introduced a generalized
form of entropy in an attempt to describe complex systems [3]. This was the starting
point for several generalizations of thermodynamics, statistical mechanics and
kinetic theories (see, e.g., Ref. [4]). A lot of experimental and numerical studies (in an
impressive number of domains of physics) have then shown that complex systems
exhibit non-standard distributions and that, in many cases, they can be fitted by
Tsallis q-distributions [5]. However, there also exists physical systems (like those
that we shall consider here) that are described neither by Boltzmann nor by Tsallis
distributions.
An important question is to understand why non-standard distributions and

generalized entropies emerge in a system. We have argued that non-standard
distributions arise when microscopic constraints are in action [6]. They sometimes
appear as ‘‘hidden constraints’’ inaccessible to the observer. For ‘‘simple systems’’,
the energetically accessible microstates are equiprobable and a standard combinator-
ial analysis leads to the Boltzmann entropy. Then, the equilibrium distribution (most
probable macrostate) maximizes the Boltzmann entropy at fixed macroscopic
constraints (mass, energy; . . .). For ‘‘complex systems’’, the a priori accessible
microstates are not equiprobable, some being even forbidden, contrary to what is
postulated in ordinary statistical mechanics. The non-equiprobability of microstates
can be due to microscopic constraints (of various origin) that affect the dynamics. In
certain cases, the microscopic constraints can be dealt with by using a generalized
form of entropy. In principle, this entropy S ¼ lnW 0 should be obtained from a
counting analysis by assuming that the microstates which satisfy the macroscopic
constraints and the microscopic constraints are equiprobable. An example of
microscopic constraints is provided by the Pauli exclusion principle in quantum
mechanics which prevents two fermions with the same spin to occupy the same site in
phase space. Because of this constraint, the Boltzmann entropy is replaced by the
Fermi–Dirac entropy which puts a bound f ðx; vÞpZ0 on the maximum value of the
distribution function. In this example, the exclusion principle is explained by
quantum mechanics so it has a fundamental origin. Another example is when the
particles are subject to an excluded volume constraint. In simplest models (e.g., a
lattice model), this is accounted for by introducing a Fermi–Dirac type entropy in
physical space which puts a bound rðxÞps0 on the maximum value of the spatial
density. These entropies can be obtained from a combinatorial analysis which
carefully takes into account the fact that two particles cannot be in the same
microcell in phase space or in physical space. More generally, we can imagine other
situations where some microscopic constraints (not necessarily of fundamental
origin) act on the system and lead to non-standard forms of distribution functions
and entropies.
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