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Abstract

The relation between thermodynamic phase transitions in classical systems and topology
changes in their state space is discussed for systems in which equivalence of statistical
ensembles does not hold. As an example, the spherical model with mean field-type interactions
is considered. Exact results for microcanonical and canonical quantities are compared with
topological properties of a certain family of submanifolds of the state space. Due to the
observed ensemble inequivalence, a close relation is expected to exist only between the
topological approach and ome of the statistical ensembles. It is found that the observed
topology changes can be interpreted meaningfully when compared to microcanonical
quantities.
© 2005 Elsevier B.V. All rights reserved.
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Phase transitions, like the boiling and evaporating of water at a certain
temperature and pressure, are common phenomena both in everyday life and in
almost any branch of physics. Loosely speaking, a phase transition brings about a
sudden change of the macroscopic properties of a system while smoothly varying a
parameter (the temperature or the pressure in the above example). For the
description of equilibrium phase transitions within the framework of statistical
mechanics, several so-called statistical ensembles or Gibbs ensembles, like the
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microcanonical or the canonical one, are at disposal, each corresponding to a
different physical situation. For a large class of systems with sufficiently short ranged
interactions, these different approaches lead to identical numerical values for the
typical system observables of interest, after taking the thermodynamic limit of the
number of particles in the system going to infinity [1]. In this situation one speaks of
equivalence of ensembles. Then, instead of selecting the statistical ensemble
according to the physical situation of interest, one can revert to the ensemble most
convenient for the computation intended. For systems with long range interactions,
however, equivalence of ensembles does not hold in general. Systems showing such
an inequivalence of ensembles in the thermodynamic limit (among those gravita-
tional systems and Bose—Einstein condensates) have attracted much research interest
in the last years (see Ref. [2] for a review). Dramatic differences between the
ensembles can be observed for example in the specific heat, which is a strictly positive
quantity in the canonical ensemble, whereas, negative values, and even negative
divergences, can occur in the microcanonical ensemble [3,4].

An entirely different approach to phase transitions, not making use of any of the
Gibbs ensembles, has been proposed recently. This topological approach connects the
occurrence of a phase transition to certain properties of the potential energy V,
resorting to topological concepts. From a conceptual point of view, this approach has
a remarkable property: the microscopic Hamiltonian dynamics can be linked via the
Lyapunov exponents to the topological quantities considered [5]. With the
topological approach, in turn, linking a change of the topology to the occurrence
of a phase transition, a concept is established which provides a connection between a
phase transition in a system and its underlying microscopic dynamics.

The topological approach is based on the hypothesis [6] that phase transitions are
related to topology changes of submanifolds X, of the state space of the system,
where the X, consist of all points ¢ of the state space for which V(g)/N = v, i.e., their
potential energy per degree of freedom equals a certain level v. (Or, in a related
version, the topology of submanifolds M, consisting of all points ¢ with V(g)/N <v
is considered.) This hypothesis has been corroborated by numerical and by exact
analytical results for a model showing a first-order phase transition [7,8] as well as
for systems with second-order phase transitions [5,9—13]. A major achievement in the
field is the recent proof of a theorem, stating, loosely speaking, that, for systems
described by smooth, finite-range, and confining potentials, a topology change of the
submanifolds X, is a necessary criterion for a phase transition to take place [14].

Albeit necessary, such a topology change is clearly not sufficient to entail a phase
transition. This follows for example from the analytical computation of topological
invariants in the XY model [9,10], where the number of topology changes occurring
is shown to be of order N, but only a single phase transition takes place. So topology
changes appear to be rather common, and only particular ones are related to phase
transitions. There are strong indications that a criterion based exclusively on
topological quantities cannot exist in general [13].

Having mentioned the recent efforts to more firmly establish sufficient and
necessary relations between topology changes and phase transitions, and bearing in
mind the phenomenon of ensemble inequivalence, we notice an additional
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