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a b s t r a c t

This paper develops a higher-order macroscopic model of pedestrian crowd dynamics
derived from fluid dynamics that consists of two-dimensional Euler equations with
relaxation. The desired directional motion of pedestrians is determined by an Eikonal-type
equation, which describes a problem that minimizes the instantaneous total walking cost
from origin to destination. A linear stability analysis of the model demonstrates its ability
to describe traffic instability in crowd flows. The algorithm to solve themacroscopic model
is composed of a splitting technique introduced to treat the relaxation terms, a second-
order positivity-preserving central-upwind scheme for hyperbolic conservation laws, and
a fast-sweepingmethod for the Eikonal-type equation on unstructuredmeshes. To test the
applicability of the model, we study a challenging pedestrian crowd flow problem of the
presence of an obstruction in a two-dimensional continuouswalking facility. The numerical
results indicate the rationality of the model and the effectiveness of the computational
algorithm in predicting the flux or density distribution and the macroscopic behavior of
the pedestrian crowd flow. The simulation results are comparedwith those obtained by the
two-dimensional Lighthill–Whitham–Richards pedestrian flow model with various model
parameters, which further shows that the macroscopic model is able to correctly describe
complex phenomena such as ‘‘stop-and-gowaves’’ observed in empirical pedestrian flows.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The simulation of pedestrian and crowd dynamics has become increasingly important for the security and safety
management of pedestrian traffic. Numerical simulation of crowds, both as a continuumand in terms of discrete pedestrians,
is an effective tool to investigate and predict the characteristics of crowd behavior and movement [1–23], such as the
formation of lanes of uniform walking directions and oscillations at bottlenecks at moderate densities. The idea of treating
the flows of large crowds of pedestrians as continuous media with a path choice decision process is a recent development
in pedestrian studies [17,18]. With this approach, individual behavior is averaged out and collective behavior, in particular
pedestrian movement, can be taken into account, thus allowing macroscopic modeling. The macroscopic models in the
literature describe the dynamics of macroscopic variables (e.g., density, velocity, and flow) using a set of partial differential
equations [16–23]. Among these models, the two-dimensional (2D) Lighthill–Whitham–Richards (LWR) model [18,21,23]
has received much attention. The model describes the conservation of mass by assuming an equilibrium state of the
flow–density relationship and a directionalmotion of an individual pedestrian thatminimizes his or her instantaneous travel
cost to a destination. Numerical simulations of the LWRmodel have shown it to be a useful tool for the planning and design
of walking facilities. Non-equilibrium phase transitions and various nonlinear dynamic phenomena such as the formation
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of traffic jams and stop-and-go waves were observed in empirical pedestrian flows [24,25], and it is thus reasonable that 2D
pedestrian dynamic equations can be extended from the one-dimensional (1D) higher-order vehicular continuum models
to describe the complex phenomena in real traffic [2,20]. The main difference between crowd and vehicular flows is that
the former can walk freely in a 2D continuous domain, whereas the latter move in a 1D space. This means that pedestrians
can make a simultaneous path choice, based on a specific traffic situation.
This paper aims to simulate amacroscopic pedestrian dynamicmodel derived from fluid dynamics that consists of 2D Eu-

ler equationswith relaxation. The dynamicmodel describes the conservation ofmass and the equilibrium of linear ‘‘momen-
tum’’. The model can be viewed as an extension of the 1D Payne–Whitham (PW) vehicular model [26,27]. Its homogeneous
equations remain hyperbolic and isotropic. The desired direction of motion appearing in the relaxation terms of the model
needs to be specified. We assume that pedestrians tend to move in a reactive user-optimal manner whereby they choose
the path that minimizes the instantaneous total travel cost from origin to destination. The travel cost mainly represents the
travel time, and the cost distribution is thus defined as the inverse of the speed. The assumption gives rise to an Eikonal-
type equation [21,23] by which the desired direction of motion can be determined. A linear stability analysis of the dynamic
model shows that the model can describe traffic instability in crowd flows. For large enough perturbations in a crowd flow
such as a traffic accident or bottleneck, the condition of stability is violated and traffic instability occurs, which leads to
non-equilibrium phase transitions and the nonlinear dynamical phenomena observed in empirical pedestrian flows [24].
Unstructured meshes are used for the spatial discretization of the model to allow the modeling of a continuous walking

facility with a complex geometry. To obtain amore stable numerical algorithm to solve themodel, a splitting technique [28]
is applied to divide the model into a homogeneous subproblem and a source subproblem for a given time increment.
The algorithm comprises two major steps. In the first, a second-order fast-sweeping method (FSM) is applied to solve
the Eikonal-type equation, which generates the desired direction of motion. In the second, a cell-centered finite-volume
method (FVM) coupled with a second-order positivity-preserving central-upwind scheme is designed to derive the semi-
discretized scheme of the balance laws. The resultant scheme is of second-order accuracy, whichmatches the second-order
total variation diminishing (TVD) Runge–Kutta method for time discretization. We use an example of a pedestrian crowd
flow problem in the presence of an obstruction within a 2D walking facility to demonstrate the applicability of the model
and the effectiveness of the computational algorithm. The numerical results for the formation of high-density regions and
the effects of the obstruction on the flow characteristics indicate that the model produces reasonable patterns of pedestrian
movement, and that the solution algorithm is effective. These results also help to visualize the evolution of a crowd and
the motion trajectories of pedestrians, and to predict the macroscopic characteristics of crowd flows. The simulation results
based on various model parameters are compared with those obtained by the 2D LWR model [18,23] for pedestrian flow,
which further demonstrates that the macroscopic model is able to correctly describe the complex phenomena in empirical
pedestrian flows.
The remainder of this paper is organized as follows. In Section 2, we derive the pedestrian dynamic model from fluid

dynamics and its linear stability condition. Section 3 dealswith the numerical algorithmused to solve themodel. In Section 4,
we consider a numerical example to test the rationality of the model and the efficiency of the algorithm. The final section
offers some conclusions.

2. Pedestrian dynamic model

In this section, a pedestrian dynamic model is formulated as a set of 2D Euler equations with relaxation. A linear stability
analysis is performed on the dynamic model, which shows the model’s ability to describe traffic instability in a crowd flow.
Themodel can be viewed as an extension of the 1D Payne–Whitham (PW) vehicular model, and its homogeneous equations
remain hyperbolic and isotropic.

2.1. Model description

Consider pedestrians in a crowdmoving through a 2D continuouswalking facilityΩ (inm2) that contains an obstruction.
The wall of Ω and the sections of the entrance and exit are respectively denoted by Γw , Γi, and Γo (in m). Similar to flow
conservation in fluid mechanics, the traffic density and flow vector must satisfy the following flow conservation equation:

ρt +∇ · F = 0, ∀(x, y) ∈ Ω, t ∈ T , (1)

where ρt =
∂ρ

∂t and ∇ = (
∂
∂x ,

∂
∂y ); T (in s) is the modeling period; ρ(x, y, t) (in ped/m

2) denotes the pedestrian density at
location (x, y) at time t; and F = ρv is the flow vector (in ped/m/s), where v = (u(x, y, t), v(x, y, t)) (inm/s) are the average
speeds of pedestrian motion in the x-direction and the y-direction, respectively.
The differences between the various existingmacroscopic trafficmodels relate to the equations for the average pedestrian

velocity. The 2D LWRmodel assumes an equilibrium state of the speed–density relationship Ue(ρ) that is dependent on the
local pedestrian density ρ, and a corresponding directional motion of an individual pedestrian ν = (νx(x, y, t), νy(x, y, t)).
To describe complex pedestrian traffic phenomena such as traffic jams and stop-and-go phenomena [24], dynamic equations
for the average speeds u, v must be introduced by using a similar approach to that applied to vehicle traffic flow. We refer
the reader to [29–31] for discussion of thementioned phenomena alongwith their analytical properties in the vehicle traffic
flow problem.
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