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a b s t r a c t

Stochasticity and spatial heterogeneity are of great interest recently in studying the
spread of an infectious disease. The presented method solves an inverse problem to
discover the effectively decisive topology of a heterogeneous network and reveal the
transmission parameters which govern the stochastic spreads over the network from a
dataset on an infectious disease outbreak in the early growth phase. Populations in a
combination of epidemiological compartment models and a meta-population network
model are described by stochastic differential equations. Probability density functions are
derived from the equations and used for themaximal likelihood estimation of the topology
and parameters. The method is tested with computationally synthesized datasets and the
WHO dataset on the SARS outbreak.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

When the epidemiologists at a public health agency detect a signal of an infectious disease outbreak, they rely heavily on
mathematical models of disease transmission in estimating the rate of transmission, predicting the direction and speed of
the spread, and figuring out an effective measure to contain the outbreak. Many of the models formulate stochasticity and
spatial heterogeneity, which are of great interest recently. The spatial heterogeneity ranges from the uneven probabilities
of contacts between the individuals in communities [1,2], dependence of the strength of the demographical interactions
between cities on the distance [3], to nation-wide or world-wide inhomogeneous geographical structures [4,5].
AMonte-Carlo stochastic simulation is widely used to understand the influence of the spatial heterogeneity on stochastic

spreading. In such a simulation, accuracy and reproducibility of the input demographical knowledge such as the amount of
traffic between cities have great impacts on the reliability of the output pattern of the movement of pathogens and their
hosts. But, in studyingworld-wide epidemics, just a collection of regular airline routes and aircraft capacities does not always
present the transportation network which results in the real chain of transmission. Some routes are influential decisively,
but the others are not. Examples are found in the spread of Severe Acute Respiratory Syndrome (SARS) from Asia to the
world in 2003. There were not any cases in Japan in spite of the heavy traffic there from Asian countries. Many patients
appeared in Canada earlier than the United States to which airlines connect Asian countries muchmore densely. Here arises
an interesting question. Inversely, is it possible to learn the effectively decisive transportation network by observing how
the disease spreads, reinforce the demographical knowledge on the network, and import the acquired knowledge into the
mathematical model? This is an inverse problem similar to the network tomography [6,7].
In this study, a statistical method is presented to discover the effectively decisive topology of a heterogeneous network

and reveal the parameters which govern stochastic transmission from a dataset on the early growth phase of the outbreak.
The dataset consists of either the number of infectious persons or the number of new cases per an observation interval.
The method is founded on a mathematical model for a stochastic reaction–diffusion process [8]. The population in the
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model is described by a set of Langevin equations. The equations are stochastic differential equations which include rapidly
fluctuating and highly irregular functions of time. Probability density functions and likelihood functions are derived from
the equations analytically, and used for the maximal likelihood estimation of the topology and parameters. The method is
tested with a number of computationally synthesized datasets and the World Health Organization (WHO) dataset on the
SARS outbreak in March through April in 2003.

2. Problem

2.1. Stochastic model

Themodel in this study is a special case of a stochastic reaction–diffusion process. Themodel is a combination of standard
epidemiological SIR or SIS compartment models and a meta-population network model [9]. The meta-population network
model [10] sub-divides the entire population into distinct sub-populations in N geographical regions. Movement of persons
occurs between the sub-populations while the epidemiological state transitions (infection and recovery) occur in a sub-
population. A sub-population is randomly well-mixed. Heterogeneity is present between sub-populations.
The geographical regions are represented by nodes ni (i = 0, 1, . . . ,N−1). The movement is parameterized by a matrix

γ whose i-th row and j-th column element γij is the probability at which a person moves from ni to nj per a unit time. A
person remains at the same node at the probability of 1−

∑N−1
j=0 γij. Generally, γij = γji does not hold. By definition, γii = 0. It

is often confirmed empirically that a simple law relates a network topology to the movement [11]. The topology is specified
by a neighbor matrix l. The transportation between two regions is represented by a pair of unidirectional links. If a pair
of links is present between ni and nj, lij = lji = 1. If absent, lij = lji = 0. By definition, lii = 0. In the experiments in
Section 4, an empirically confirmed law γij = Γij(l) is postulated, and the topology and the probability of movement are
treated interchangeably.
The SIR compartmentmodel [12] is a behavioral extremewhere immunity is life-long. The state of a person changes from

a susceptible state (S), through an infectious state (I), to a recovered state (R). In contrast, the immunity does not occur in
the SIS compartment model. The state of a recovered patient goes back to S. The parameter α represents the probability at
which an infectious person contacts a person and infect the person per a unit time. If the contacted person is susceptible, the
number of the infectious persons increases by 1. The effective rate of infection by a single infectious person is the product
of α and the proportion of the susceptible persons within the population. The parameter β represents the probability at
which an infectious person recovers per a unit time. These parameters are constants over subpopulations and time. The
basic reproductive ratio r is defined by r = α/β [13].
Movement, infection and recovery are Markovian stochastic processes governed by γij, α, and β .

2.2. Time evolution of spread

In a stochastic process, even if the initial condition is known, there are many possible trajectories which the process
might go along. A set of these possible trajectories is a statistical ensemble. The change in the population is described by a
set of Langevin equations [14]. A Langevin equation is a stochastic differential equation [15]. The microscopic continuous
time evolution of a system is obtained by adding a fluctuation (a stochastic term) to the knownmacroscopic time evolution
of the system.
The quantity Si(t) is the number of susceptible persons at a node ni at time t . Ii(t) is the number of infectious persons.

Ri(t) is the number of recovered persons. The change in Ii(t) (i = 0, 1, . . . ,N − 1) is given by Eq. (1) [16]. It is a set of N
stochastic differential equations.

dIi(t)
dt
=

αSi(t)Ii(t)
Si(t)+ Ii(t)+ Ri(t)

− βIi(t)+
N−1∑
j=0

γjiIj(t)−
N−1∑
j=0

γijIi(t)

+

√
αSi(t)Ii(t)

Si(t)+ Ii(t)+ Ri(t)
ξ
[α]
i (t)−

√
βIi(t)ξ

[β]

i (t)+
N−1∑
j=0

√
γjiIj(t)ξ

[γ ]

ji (t)−
N−1∑
j=0

√
γijIi(t)ξ

[γ ]

ij (t). (1)

Stochastic terms ξ(t) = (ξ
[α]
i (t), ξ [β]i (t), ξ [γ ]ij (t)) are rapidly fluctuating and highly irregular functions of time. The

number of terms is M = N2 + N (N terms for infection, N terms for recovery, and N(N − 1) terms for movement). The
functional forms of individual elements ξa(t) (a = 0, 1, . . . ,M−1) are not known. Their statistical property is the Gaussian
white noise which satisfies Eq. (2) through (4).

〈ξa(t)〉ensemble = 0 (2)
〈ξa(t)ξb(u)〉ensemble = δabδ(u− t) (3)
〈ξa(t)ξb(u)ξc(v) · · ·〉ensemble = 0. (4)
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