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1. Introduction

Surface roughening is associated with a wide variety of systems, such as domain walls of a two-dimensional random bond
Ising model [1], randomly stirred fluids [2], ballistic aggregation [3], and directed polymers in a random potential [4,5], and
has been extensively studied by using various continuum growth equations as well as discrete atomistic models [6,7]. The
most common continuum equation describing the surface growth is the Kardar-Parisi-Zhang (KPZ) equation, given as [8]
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where 7 represents the Gaussian random variable that satisfies
(n(F, O, t)) = 2I8(F =78t — '), (2)

with I describing the local noise variation. Various discrete models such as the Eden growth [9], the ballistic deposition [10],
and the restricted solid-on-solid (RSOS) model [11] were known to be described by the KPZ equation.

The coefficient A in the “continuum” KPZ equation describing the curvature of the local growth velocity is associated
with the difference of the deposition rate and the evaporation rate in the discrete lattice models [12]. Therefore, for the
symmetric case where the two rates are equal, A should vanish and the KPZ equation is reduced to the Edwards-Wilkinson
(EW) equation [13]. On the other hand, for the asymmetric case where the two rates are not equal, the growth becomes
nonequilibrium in nature, and the critical behavior is expected to be the same as for the pure deposition model. The models
that are described by the EW equation are considered to belong to the EW universality class, whereas those which are
described by the KPZ equation are considered to belong to the KPZ universality class.
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The surface width, W, is defined as the standard deviation or the root-mean-square fluctuation of heights:
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where h(F, t) represents the local height variable at site 7 and time t, h(t) represents the average height over lattice sites,
and (- - -) denotes the average over various samples. Here, d is the substrate dimension and, therefore, the total dimension
is d + 1. It is generally hypothesized that W (t, L) obeys the scaling relation, given as [14]

W(t, L) = Lif(t/17) — tP, t < I7,
— 15, t> %, (4)

where the scaling function f (x) behaves as x for x < 1 and becomes constant in the x > 1 limit. The roughness exponent ¢
is the quantity that describes the characteristic of the saturated surface width at a sufficiently late time. The growth exponent
B and the dynamic exponent z are associated with each other by the relationship z8 = ¢. In the equilibrium growth with
A = 0, the EW equation was solved exactly, yielding 8 = (2 — d)/4,¢ = (2 — d)/2 and z = 2 [13]. In the nonequilibrium
growth with A # 0, the KPZ equation was solved only in one dimension, giving 8 = % and ¢ = % [8].In 241 dimensions, the
exponents were obtained by numerical simulations as { = 0.38-0.40 and 8 = 0.24-0.25[5,11,15-17]. From the simulation
results in one to four dimensions, the exponents were conjectured tobe 8 = 1/(d + 1) and { = 2/(d + 2) in a d-substrate
dimension [11,12], but they were not yet confirmed in higher dimensions [17-20].

Besides the growth of surface width, the height-height correlation function defined by the mean-square difference of
heights separated by a distance r,

G(r5 t) = ([h(ro +r, t) - h(rOv t)]z)a (5)

is also an interesting quantity that describes dynamics of the growing surfaces [8,11,21]. For r < &, since the heights within
this distance are fully correlated, the correlation function increases as G(r, t) ~ r%¢. As time increases, the correlation length
£ increases as £ ~ t'/Z and eventually reaches L in the t >> [? limit. Within the time t < [? forr > £, it is easy to show
that G(r, t) = 2W?(t) and, therefore, G(r, t) — G (t) o< t?2. Therefore the height-height correlation function scales as

Gr,t) =r¥gr/tV*) — ¥, r<
L (6)

where the scaling function g(u) is constant for u < 1andisu=% foru > 1.

Recently, surface growth for the equilibrium and nonequilibrium RSOS models was studied on diluted lattices, i.e., on
percolation networks, generated for the occupation probability of percolation p < p., and the growth and roughness
exponents, 8 and ¢, were measured from the surface width [22]. It was found that, for the equilibrium growth, the critical
exponents were unchanged for the concentration of diluted sites x (=1 — p) below the critical concentration x.. For x = x
(=1 — pc, pc being the percolation threshold), the growth yielded nontrivial exponents which were different from those on
aregular lattice. For the nonequilibrium growth, on the other hand, a considerable amount of diluted sites x < x. appeared
to break the power-law behaviors for both the surface width against time and the saturated width against system size.

Motivated by these results, an influence of the diluted sites on the height-height correlation function is investigated in
this work. The attention is focused particularly on how the diluted sites influence the power-law behavior of G(r, t) in the
two extreme limits, for both the equilibrium and nonequilibrium growth in two substrate dimensions. The diluted sites are
considered to be the quenched disorder, and influence of such a quenched disorder has been of a long-standing problem in
various problems in statistical mechanics [23,24].

In Section 2, the models and the simulation methods are described. In Sections 3 and 4, results of the equilibrium and
nonequilibrium growths for the RSOS model are presented. Summary and concluding remarks are provided in Section 5.

2. Models and methods

In this section, the equilibrium and nonequilibrium RSOS growth models and the method of sampling for the correlation
functions are described.

2.1. Restricted solid-on-solid model

The dynamic rule of the RSOS condition is to randomly select a site at 7 and deposit a particle with a probability p., or
evaporate with a probability p_, i.e., h(F) — h(r) & 1, provided that the restriction regarding the local height difference

|Vh| = |h(F) — h()| < 1 (7)

is satisfied between the selected site at 7 and the nearest-neighbor sites at 7. In the equilibrium RSOS model, p, = p_ =
and the strength of nonlinearity vanishes, i.e, A = 0. Thus, the model is described by the EW equation. It has been know:
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