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a b s t r a c t

Undermost local and stochastic volatilitymodels the underlying forward is assumed to be a
positive function of a time-changed Brownianmotion. It relates nicely the implied volatility
smile to the so-called activity rate in the market. Following Young and DeWitt-Morette
(1986) [8], we propose to apply the Duru–Kleinert process-cum-time transformation in
path integral to formulate the transition density of the forward. The method leads to
asymptotic expansions of the transition density around a Gaussian kernel corresponding to
the average activity in the market conditional on the forward value. The approximation is
numerically illustrated for pricing vanilla options under the CEV model and the popular
normal SABR model. The asymptotics can also be used for Monte Carlo simulations or
backward integration schemes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The central theme of this paper is the arbitrage free dynamics of forward prices and the numerical evaluation of simple
financial securities. A forward contract is an agreement to pay a specified price at maturity T for a tradable asset X . If we
define the discount factor as D(t, T ) = E∗

[
e−

∫ T
t r(s)ds

]
, with {r(s), 0 ≤ s ≤ T } the spot short-term interest rate, then the

forward price FT (t) for such a contract at time t (0 ≤ t ≤ T ) can be determined by

E∗
[
e−

∫ T
t r(s)ds(X(T )− FT (t))

]
= 0, (1)

where E∗[.] denotes the expectation with respect to the risk-neutral measure. Thus

X(t)− D(t, T )FT (t) = 0, or FT (t) = X(t)/D(t, T ), (2)

(see e.g. Ref. [1]). The time-evolution of the forward price FT (t) is partially determined by arbitrage free requirements.
Indeed there exists a forward probability measure, equivalent to the risk-neutral measure, under which the forward price
is a martingale. For a complete account on forward measure we refer to Ref. [2]. In the following, we omit in the notation of
the forward price the dependence on T , and we will use F(t) instead of FT (t), and f0 will denote the forward price at time 0,
F(0).
Next to forward contracts, simple securities are traded in the markets on a regular basis. A plain vanilla European call

optionwith pay-off (x−K)+ e.g., gives the holder protection against high values of the underlying asset X atmaturity date T .
As the price of any asset divided by the discount factor D(t, T ) is a martingale under the corresponding forward measure
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(in financial terms, we say that the asset D(t, T ) is the numeraire); see e.g. Ref. [2], the price V (f0, K , T ) of a European call
option with strike K and expiry T at time 0 satisfies

V (f0, K , T )
D(0, T )

= Ef0

[
V (F(T ), K , 0)
D(T , T )

]
= Ef0 [(F(T )− K)+]

=

∫
+∞

K
p(f0, fT , T )(fT − K)dfT , (3)

where Ef0 denotes the expectation with respect to the forward measure and where p(f0, f , T ) is the transition density of the
price process {F(t), t ≥ 0}, or p(f0, f , T ) = Ef0 [δ(F(T )− f )].
The Black model assumes that the forward price of an asset follows the log-normal process

dF(t) = σBF(t)dW (t), F(0) = f0 (4)

where {W (t), t ≥ 0} is a Brownian motion in the forward measure; see e.g. Ref. [3] for more details.
From a practical perspective, the model has to be consistent with the prices of liquid (or vanilla) options quoted in

the market. Although the Black model remains popular to manage books of vanilla options, the assumption of log-normal
underlying price is in fact not appropriate. As a consequence, the quoted implied Black volatilities σB(K , T ) vary with the
expiry and along the strikes (skew and smile). An implied Black volatility corresponds to the volatility parameter σB of the
Black diffusion (4) that matches exactly the market price of a European option with strike K and maturity T ; the term smile
refers to U-shape of implied volatilities as a function of the strike while a skew exhibits monotone implied volatilities across
strikes.
That is where local volatility models enter, as contrary to the Blackmodel, they are able to incorporate a base skew. More

general stochastic volatility models can be defined as

dF(t) = v(t)ψ(F(t))dW (t), F(0) = f0, v(0) = v0 (5)

with ψ a continuously differentiable function, and with {v(t), t ≥ 0} another adapted process eventually correlated to F .
Contrary to the Black model, they offer a good fit to the market smile and predict realistic dynamics of forward volatilities.
For most stochastic volatility models, a closed-form expression for the moment generating function (MGF) is available.

This allows a fast calibration to the market smile, but at the cost of inverting the Fourier transform. Edgeworth expansions
present a possible method to invert the Fourier transform analytically. It consists of truncating the cumulant representation
of the MGF and expand the transition density p(f0, fT , T ) of the forward price F around the Gaussian kernel with the correct
two first moments. In particular, this means that

p(f0, fT , T ) = Ef0 [δ(F(T )− fT )]

=

∫
+∞

−∞

dkEf0
[
e−2π ikF(T )

]
e2π ikfT

=

∫
+∞

−∞

dk exp

(
+∞∑
j=1

(−2π ik)j

j!
Cj

)
e2π ikfT , (6)

where Cj with j ≥ 1 are the cumulants1 of F(T ) and where we have used the Fourier representation of the Dirac delta
function δ(x) =

∫
+∞

−∞
dk e−2π ikx. Expanding the exponential function after the second cumulant, we obtain

p(f0, fT , T ) =
∫
+∞

−∞

dk exp
(
−2π ikC1 − 2π2k2C2

) (
1+

8
6
π3ik3C3 + · · ·

)
e2π ikfT

=
1

√
2πC2

e−
(fT−C1)

2
2C2 −

1
6
C3
∂3

∂ f 3T

(
1

√
2πC2

e−
(fT−C1)

2
2C2

)
+ · · · . (7)

Unfortunately, this series converges slowly for heavy tailed distributions, which is the case for realistic stochastic volatility
models, because the cumulants Cj with j ≥ 3 are high compared to C1 and C2. If either theMGF is not available or a numerical
inversion of the Fourier transform is not appropriate, asymptotic expressions for the implied Black volatility σB(K , T ) are
suggested in the mathematical finance literature; see e.g. Refs. [4] or [5] among many others.

1 The first cumulant of a randomvariableX is precisely its expectation E[X], the higher order cumulants coincidewith the higher order centeredmoments
Cj = E

[
(X − E[X])j

]
for j > 1. Note that the cumulants of higher order are related to the momentsMj = E

[
X j
]
by the polynomial relation

Cn = Mn −
n−1∑
i=1

(
n− 1
i− 1

)
Ci Mn−i.
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