
Physica E 30 (2005) 134–137

Higher Landau levels contribution to the energy of interacting electrons
in a quantum dot

Augusto Gonzaleza,b,�, Juan David Sernac, Roberto Capoted, Guillermo Avendañoa
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Abstract

Properly regularized second-order degenerate perturbation theory is applied to compute the contribution of higher Landau levels to

the low-energy spectrum of interacting electrons in a disk-shaped quantum dot. At ‘‘filling factor’’ near 1
2
, this contribution proves to be

larger than energy differences between states with different spin polarizations. After checking convergence of the method in small

systems, we show results for a 12-electron quantum dot, a system which is hardly tractable by means of exact diagonalization techniques.
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1. Introduction

The relevant energy scales entering the Hamiltonian of
an N-electron system in a quantum dot (qdot) and a
magnetic field are the following: the cyclotronic energy
_oc�B, the dot confinement energy _o0, and the Coulomb
characteristic energy e2=ðklBÞ�

ffiffiffiffi
B
p

. In strong enough fields,
the spacing between Landau levels (LLs), given by _oc, is
much greater than any other scale, and one can restrict the
Hilbert space to functions built on one-particle states from
the first LL. This is the 1LL approximation [1], which has
been widely used to obtain exact solutions [2], to construct
the famous n ¼ 1

3
FQHE functions [3], later extended to

other filling factors by means of the Composite Fermion
recipe [4] and, in general, has been used to numerically
diagonalize the interacting Hamiltonian [1].

The inclusion of higher LLs in numerical calculations
turns out to be prohibitive, even for relatively ‘‘small’’

systems. Consider, for example, N ¼ 12 electrons in a qdot
at ‘‘filling factor’’ near 1

2
, i.e. when the angular momentum

of the electron droplet is L ¼ �132. Out of only 78 one-
particle states (orbitals) in the 1LL, one can construct
674 585 Slater determinants, which conform the truncated
basis for the 12-particle system in the 1LL approximation.
Taking 78 additional orbitals from each of the next two
LLs causes the basis dimension to be raised to more than
172 millions, and the diagonalization of the Hamiltonian
matrix becomes a very hard computational task.
In the present paper, we show that a way to circumvent

the diagonalization of these large matrices is the use of
properly renormalized degenerate perturbation theory
(PT). We stress that, unlike Monte Carlo and other
methods focusing on the properties of a particular state,
by means of PT we obtain, in a single calculation, an
approximation to the energy spectrum and the correspond-
ing wave functions of the system.
The interest in computing the higher LL contribution to

the energies relies on the fact that, for intermediate filling
factors, this contribution may be even larger than energy
differences between states with different spin polarizations
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[5]. Thus, a correct description of spin excitations in a
system of interacting electrons should take account of
higher LL effects. Recent work on the issue of spin
excitations in qdots [6] has stressed the importance of the
second LL at n � 2, but at lower n the higher LL effects are
commonly ignored.

The plan of the paper is as follows. In the next two
sections a brief summary of PT and its regularization by
means of Shank extrapolants [7] and the Principle of
Minimal Sensitivity [8] is included for completeness. For
simplicity, only spin-polarized systems will be studied, but
any other spin-polarization sector may be treated as well.
Section 4 is devoted to the results. The 2- and 6-electron
dots are used as benchmarks where regularized second-
order PT (PT2) is compared with exact or variational
results. After validation, the method is applied to the 12-
electron system mentioned above. Concluding remarks are
given at the end of the paper.

2. Degenerate perturbation theory

The 1LL approximation can be seen, from another point
of view, as first-order degenerate perturbation theory. In
fact, writing the Hamiltonian in the form: H ¼ H0 þ V ,
where H0 describes free (spin-polarized) electrons in a
magnetic field, and V ¼ V conf þ V coul accounts for the
external confinement and Coulomb interactions, the
Hamiltonian matrix in the 1LL approximation,

H
ð1Þ
ij ¼ hSijHjSji ¼ E0dij þ hSijV jSji, (1)

where E0 ¼ N_oc=2 and Si, Sj are Slater determinants
made up from 1LL orbitals, may be seen as the secular
matrix of first-order degenerate perturbation theory [9].
The degeneracy subspace is spanned by the Si.

Corrections to (1) are computed in the standard form [9].
The second-order matrix is given by

H
ð2Þ
ij ¼ E0dij þ Si V þ

X
Z

V jZihZjV

E0 � E0ðZÞ

�����
�����Sj

* +
, (2)

where the sum runs over eigenfunctions of H0 in the
orthogonal subspace, hZjSii ¼ 0, and E0ðZÞ ¼ hZjH0jZi.

We will use Eq. (2) to compute higher LLs contributions
to the energy spectrum of an N-electron qdot. Note that
the dimension of the secular equation is not increased by
the inclusion of the second-order corrections. For the
largest systems, an energy cutoff, E0ðZÞ � E0pKcut_oc,
will be imposed to limit the number of states entering the
sum. We will show results with Kcut ¼ 2, i.e. three LLs will
be included.

2.1. The orthogonal subspace

One can explicitly use the fact that V conf and V coul are,
respectively, one- and two-body operators, and exploit
their symmetries (conservation of total angular momen-
tum) in order to carry out the sum only over intermediate

states, Z, having nonvanishing matrix elements with one of
the external Slater functions, for example hZjV jSjia0.
In Fig. 1, we have illustrated this statement for the

simple 4-electron system. The top of the figure shows the
occupation corresponding to a given Sj. Then, the sum will
contain functions Z1; where one occupied orbital of Sj is
raised to an orbital in a higher LL (with the same angular
momentum, l). The sum will also contain functions Z2;
where two occupied levels of Sj are moved to higher LLs.
And, finally, functions Z3 in which one occupied level of Sj

is moved to an empty level in the 1LL and a second
occupied orbital is moved to a higher LL shall also be
included. In the first case, both the matrix elements of V conf

and V coul could be nonzero, whereas in the later two cases
only V coul could have nonvanishing matrix elements.

3. Regularization of the perturbative series

To renormalize the perturbative series (usually an
asymptotic series) many recipes have been invented. In
the present paper, we will try Shank extrapolants [7]
and the principle of minimal sensitivity (PMS) [8]. A
variant of the later procedure has been recently applied to
compute the correlation energy of the Coulomb gas [10].

3.1. Shank extrapolants

Shank extrapolants [7] are designed to accelerate the
convergence of numerical series. For any three contiguous
values, Ei, Eiþ1 and Eiþ2, we define the extrapolant

Fi ¼
EiEiþ2 � E2

iþ1

Ei þ Eiþ2 � 2Eiþ1
. (3)

From the series of extrapolants (which will be called first
order) one can construct the second-order extrapolants,
etc. In our case, we have only three values of energy, E0, E1
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Fig. 1. Slater functions in the degeneracy subspace, Sj , and in the

orthogonal subspace, Z, entering the sum in Eq. (2). The example is for a

4-electron system.
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