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a b s t r a c t

We show that the platform stage of network evolution plays a principal role in the topology
of resulting networks generated by short-cuts stimulated by the movements of a random
walker, the mechanism of which tends to produce power-law degree distributions. To
examine the numerical results, we have developed a statistical method which relates the
power-law exponent γ to random properties of the subgraph developed in the platform
stage. As a result, we find that an important exponent in the network evolution is α, which
characterizes the size of the subgraph in the formV ∼ tα , whereV and t denote the number
of vertices in the subgraph and the time variable, respectively. 2D lattices can impose
specific limitations on thewalker’s diffusion, which keeps the value of αwithin amoderate
range and provides typical properties of complex networks. 1D and 3D cases correspond
to different ends of the spectrum for α, with 2D cases in between. Especially for 2D
square lattices, a discontinuous change of the network structure is observed, which varies
according to whether γ is greater or less than 2. For 1D cases, we show that emergence of
nearly complete subgraphs is guaranteed by α < 1/2, although the transient power-law
is permitted at low increase rates of edges. Additionally, the model exhibits a spontaneous
emergence of highly clustered structures regardless of its initial structure.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Over the last few years, empirical studies of large-scale networks, such as the Internet, biological systems and social net-
works, have noted common topological properties, for example, a power-law degree distribution (the scale-free property)
and small-world phenomena [1–3]. These findings have stimulated extensive studies on networks in the real world, because
the network topology plays a significant role in processes taking place on large-scale systems in such diverse research areas
as the robustness of a network with respect to attacks or failures [4–6], epidemic processes [7–10], and phase transitions in
opinion dynamics [11–13].
Mathematical network models are effective tools to study how such a universal structure emerges. Continuous addition

of new vertices to networks, i.e., the growth property, has played a large role in the development of mathematical network
models [14], as not only can the growth property describe the ordinal growth features of networks, it can also explain the
emergence of scale-free properties. However, the growth property by itself cannot explain all aspects of real networks, for
there are other possible properties of real networks, such as exhibiting a highly clustered structure, e.g., two nodes having a
common neighbor are likely to be joined, and the existence of positive or negative correlations between nodes [15,16].
Moreover, power-law exponents can assume different values corresponding to specific conditions of the network. To
model diverse aspects of networks, it is natural to take into account local properties of networks. For example, a highly
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clustered structure can bemodeled bymaking various assumptions, for example, that the original spatial structure is highly
clustered [17], two nodes that have a common neighbor are likely to be connected [18–22], networks exhibit a hierarchical
organization [23], and only activated nodes can connect with newly attached nodes in the growth process [24]. It is also
natural to expect that local events, such as the creation of short cuts between pre-existing vertices, and eliminations of
edges and vertices, are indispensable for studies of time-dependent dynamics in networks.
This paper studies a simple networkmodel where random transits, represented by a randomwalker, stimulate short-cut

creations in the network [25,26]. The rule is that new edges are created between the vertex where the random walker is
situated currently and the vertex where the random walker was two time-steps before. (A detailed description will be
presented in the next section.) This model considers the following two hypothetical features of real networks. (1) The
frequency of transit between elements of the system determines the rise and fall of the local connectivity of the system.
For example, vertices that are already of high degree are likely to acquire newer edges, owing to their high ability to attract
a random walker along one of their existing edges. (2) Vertices geographically close to each other are tightly connected. In
order to model this feature, lattice points prepared as the initial structure are assumed to be always connected, regardless
of the movements of the random walker. Geographical constraint is probably significant for networks [27–29] where the
interaction between elements is via physical objects (e.g., technological and neural networks); on the other hand, there
may be networks that do not care about the physical location of vertices (e.g., the World Wide Web). The present paper
provides one example where the platform stage of network evolution affects the resulting network structure, although
only idealized situations are considered, such as assuming a regular lattice structure, rather than the actual situation. The
investigated networks are able to make the transition from a regular lattice to a more complex network in which a spatial
structure is embedded.
In a previous paper, it was shown that network properties of a 1D lattice, such as degree distribution, vertex–vertex

distances, and the migration process of sub-networks caused by the extinction of edges, are different from those of 2D
square lattices [26]. However, the question of what determines such differences has not been answered. To answer that
question, in this paper, focus is maintained on the impact of the initial lattice structure on network evolution by avoiding
complicated situations caused by the process of eliminating old edges, which was considered in the preceding study.
Instead of considering the elimination of edges, an ‘‘edge creation probability’’ that controls the creation of edges per step is
introduced, whereas, in earlier work, the randommovement of the walker definitely added edges to the graph at each step.
The introduction of the ‘‘edge creation probability’’ to some extent frees the movement of the walker from the influence of
its last movement.
This paper is organized as follows. In the next section, the model is defined and an overview of the resulting networks is

given. Investigations in this paper are carried out for networks formed from a 1D lattice, a 2D square lattice, a 2D triangular
lattice, and a simple cubic lattice, which are reviewed in Section 2. In Section 3, some exponents, α, β and z, that describe
the growth rates of networks created by the walker are defined, and general relations, which are not always specific to
the model, between the exponents and some restrictions on them, are provided. In Section 4, numerical results for degree
distributions are examined using the relations introduced in Section 3. Here, a condition for a constant rate of increase in the
number of edges is provided, discontinuous changes in 2D square lattices corresponding to whether γ is larger or smaller
than 2 are explained, and the emergence of nearly complete subgraphs in 1D lattices is considered. In Section 5, calculation
results of the number of vertices within a certain distance from a vertex of maximum degree are given, and limitations on
themaximumvertex degree are discussed. In Section 6, a relation is derived between clustering coefficients and the increase
rate of edges, and we compare the relation with numerical results. Section 7 summarizes these results.

2. Model

The model is defined by the transformation rule of a graph Gt , that is determined by the movements of a randomwalker
on the graph Gt , where t denotes a discrete time t (t = 0, 1, 2, . . .). The transformation rule is:

1. At initial time t = 0, an initial lattice with no boundary is given as G0. This paper deals with four types of G0: a 1D lattice,
a 2D square lattice, a 2D triangular lattice, and a simple cubic lattice. A random walker is assumed to be located at one
particular vertex in G0 at time t = 0.

2. At each time step t , the randomwalkermoves with equal probability to an adjacent vertex in Gt . Let the walker’s location
at time t be xt . Then the movement xt → xt+1 results in the probabilistic creation of new edges as follows. If there is no
edge between xt−1 and xt+1, a new edge is created with probability pe between xt−1 and xt+1, which results in a revised
graph Gt+1 from Gt . If there already exists an edge between xt−1 and xt+1, Gt+1 remains the same as Gt (See Fig. 1).

Iteration of the second process results in a monotonic increase in the number of edges with time. Note that the random
walker is supposed to move in Gt which includes G0. This rule gives vertices of large degree an advantage in attracting the
randomwalker by their edges and thereby to gain new edges, whereas a vertex cannot gain edges at all without a visit from
the random walker. Consequently, the region in which each vertex has edges created by the walker’s passing corresponds
to the region that the randomwalker has visited at least once. The graph to be investigated in the following sections is such
an evolving subgraph gt in Gt , that consists of vertices with edges created by the randomwalker’s passing. Typical examples
of gt created by this rule are illustrated in Figs. 1(b), 2 and 3, each of which eventuated from a 2D triangular lattice, a simple
cubic lattice, and a 1D lattice, respectively.
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