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Abstract

One of the outcomes of nuclear reactions is that reaction products have at birth distribution functions far from

Maxwellian. What role do those distribution functions play in the evolution of the entropy of the system? The purpose of

this work is to show the effect of the distribution functions of reactant and reaction products on the entropy of a system

undergoing DD nuclear fusion reactions. This analysis is conducted with the help of the H-theorem, in the framework of

kinetic theory. It will be found that at the onset of this reaction, generalized system entropy decreases markedly.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Kinetic theory supplies a bridge between mechanics and thermodynamics [1,2], through which
thermodynamic state functions can often be extended to non-equilibrium conditions. The cornerstone of
this bridge is Boltzmann’s H-theorem [2,3], relating the change in entropy per unit volume SV to the
distribution function through the expression

DSVðr; tÞ ¼ �KBDHðr; tÞ, (1)

where KB is Boltzmann’s constant and Boltzmann’s H-function is given by [2]

Hðr; tÞ ¼

Z
<3

f ðr; v; tÞ ln f ðr; v; tÞd3v. (2)

Expression (1) holds only at equilibrium, just as entropy is defined only at equilibrium: however, this
expression supplies an extension of this state function to non-equilibrium conditions, as H is the kinetic analog
of entropy.
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The aim of this work is to analyze how this ‘‘generalized entropy’’ evolves in the course of DD fusion
reactions. This can be done in the framework of kinetic theory [4,5].

It is to be expected that the entropy will be influenced by the distribution functions. Entropy is studied
usually in the framework of thermodynamics: there the distribution functions and all the related effects are
completely neglected, and therefore this approach is not apt to describe systems away from equilibrium, and
among them nuclear reactions.

Taking the kinetic approach, the first problem to solve is to find the time evolution of the distribution
functions of the various species involved. The main purpose of this work is to show the role that the spectra of
the reaction products play in calculating entropy. In the following sections the distribution functions for the
several species will be derived, following which the variation of entropy will be calculated, and the trend
presented for a representative case.

2. Physical setting and time evolution of densities

Consider a homogeneous gas of deuterium in which D–D reactions take place. The D–D reaction has two
possible outcomes, with almost equal probability

DþD! nþHe3 DþD! pþH3. (3)

In the following, it will be assumed for simplicity that the branching has exactly 50% probability.1 Hence,
there will be five hadron species present: deuterium, helium-3, protons, tritium and neutrons, plus the
electrons. Reaction products and their initial energy are summarized in Table 1.

To simplify the problem as much as possible, consider a situation in which the heat produced in the reaction is
removed continuously (say, by bremsstrahlung) so that temperature remains constant, say 1 keV, and in which
D–D reactions are rare enough and/or the system is observed early enough that the number densities of reaction
products are very much smaller than that of Deuterium. Under such conditions, we can regard the distribution
function of Deuterium to remain essentially Maxwellian at a (constant and uniform) temperature T:

f Dðv; tÞ ¼ nDðtÞ �
4ffiffiffi
p
p

mD

KBT

� �3=2

v2 exp �
mDv2

2KBT

� �
. (4)

An equation can be written for Deuterium number density n
D
as follows (here /SM has the usual meaning of

the average over the Maxwellian distribution, and s
DD

is the cross section for the D–D reactions)

qnD

qt
¼ �2n2

DhvsDDiM (5)

with the initial condition nD(t ¼ 0) ¼ n0.
It is convenient to express the problem in dimensionless form; to this end, the following dimensionless

variables are defined (where j stands, here and elsewhere, for either n or p or He3 or H3):

~nj ¼
nj

n0
; ~Qj ¼

vj;0Qj

n0nD
; nD ¼ n0hvsDDiM;

t ¼ nDt; ~v ¼
v

vj;0
; ~f j ¼

f j

n0
vj;0. ð6Þ

Eq. (5) and its initial condition then become

d ~nD

dt
¼ �2 ~n2

D ~nDð0Þ ¼ 1 (7)

and this equation can be solved readily to give

~nDðtÞ ¼
1

1þ 2t
. (8)
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1Introducing the exact branching ratios presents no conceptual difficulty, however it would render the algebra more cumbersome

without any conceptual addition to the problem at hand.
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