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Abstract

The distribution of patients’ lengths of stay in English hospitals is measured by using routinely collected data from 11
years. It is found to be well approximated by a power law distribution spanning over more than three decades. To explain
this observation, a theoretical resource allocation model is presented. It is based on iterative long-term scheduling of
hospital beds, and its main assumption is that future beds are allocated preferentially. This represents a situation where
different parts of the health care system compete for resources, with bargaining powers proportional to current resource
levels.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

As a simple indicator of hospital activity, length of stay (LOS) has been used for many purposes on several
levels of management. It can be used to monitor quality and appropriateness of resource allocations both
internally in hospitals and at a national level [1]. LOS is clearly related to resource consumption and can thus
be used for planning and efficient sorting of patients into groups [2].

However, it is well known that the distribution of LOS is very asymmetrical with a broad tail, which makes
many statistical estimates less robust. In a small sample, it can be very difficult to track changes over time since
a single outlier can significantly change the mean and variance.

A review of different commonly used distributions for LOS is presented in Ref. [1]. Lognormal, Weibull,
and Gamma distributions are compared with empirical data from a number of countries. The results show
that both Weibull and lognormal are useful, and which one to choose depends on the specific country. In
contrast to the study presented in this paper, the authors considered specific diagnostic groups separately, here
we are only concerned with the aggregation of all diagnoses.

In Ref. [3] it is pointed out that resources allocated can be excessive for a small subset of users and at the
same time, others get few resources or even none at all. The skewness in the distribution of LOS reinforces this
picture.
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There have been some attempts to explain the underlying cause for the skewed distributions. One example is
described in Ref. [4], where a model, employing the transitions between different states of severity in the
illnesses of patients, is suggested.

The hypothesis brought forward in this paper is that LOS is mainly determined at the resource allocation
stage. This would mean that the competition for resources between different groups of patients is the
significant underlying cause of the observed distributions. The competition takes place on all levels, between
hospitals, between departments and between different types of patients within the same department.

We find that the distribution of LOS is well described by a power law, which is a common observation in
both natural and artificial systems and no specific underlying generative model can be inferred from the
observation [5-7]. However, the association between LOS and resource allocation, makes it possible that a
competitive multiplicative process is creating the fat tailed distribution. Such processes are well known and
historically trace back to the Simon model [8]. More generally, it has been shown that exponential growth
combined with random survival times is sufficient to produce power law distributions [9]. This broad class of
models includes the one proposed in this paper.

This paper is organised as follows: In Section 2 the empirical findings are presented, in Section 3 the model is
formulated, analysed and compared to the empirical data, and in the final section the results are discussed.

2. Empirical findings

The Hospital Episode Statistics (HES) database contains routinely collected data on patients in the English
National Health Service (NHS). The NHS is managed by the Department of Health and is funded by
taxpayers and provides care mostly free of charge to the individual patients. For the analysis presented in this
paper, an extract of all patient records from 1989-1990 to 2002-2003 is considered. (The NHS years do not
follow calendar years, instead they span between April 1 and March 31). Some patients admitted before 1989
are present in the data set, but no discharge data exist for patients before 1991-1992. LOS is calculated by
taking, for every episode, the difference between the discharge date (which can also mean the date of transfer
or death) and the admission date. The data set contains 130 920 010 valid values for LOS. This is about 95% of
the recorded episodes.

Here we consider all patients in the data set with a valid entry for LOS, which means that data from all
diagnostic groups are aggregated. In Fig. 1 a double logarithmic histogram for LOS is shown. It is obvious
that the distribution of LOS is very fat tailed and that it can be described fairly well as a power law over
several decades. This means that P[LOS = x]~x"". One of the most reliable ways to find a value for the
exponent y is to use the maximum likelihood estimate [5],

y=1+ #
Zi 1n(xi/xmin)

where x; are the empirically measured LOS, x,, is a lower cutoff for the power law, and 7 is the sample size.
LOS-values less than xn;, are not used in the estimation of the exponent. We choose xpnin = 5 (giving
n =33956629) and obtain y = 2.12.

(1)

3. Model

Our model is formulated from the viewpoint of a scheduler, which means that only future hospital episodes
are taken into account. Its essential ingredient is that planning is taking place iteratively at the same time as
parts of the plan are being realised. We have b beds and a planning window of length 7" days. This gives a total
number of available time slots S = bT', where every time slot corresponds to one day of hospital stay for one
patient. From now on we do not consider the actual beds, just the fact that we have a pool of S time slots that
can be used for planning future hospital episodes. These time slots are allocated between J planned episodes.
We assume an arbitrary, initial allocation, where s; denotes the number of time slots allocated to episode j with
j=1,2,...,J. The initial condition is constrained by the total number of available slots, Zlesj = S. As time
passes in the real world, the planning window is shifted forward which adds new time slots that have to be
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