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Abstract

We study the energy flow between a one-dimensional oscillator and a chaotic system with two degrees of freedom in the

weak coupling limit. The oscillator’s observables are averaged over an initially microcanonical ensemble of trajectories of

the chaotic system, which plays the role of an environment for the oscillator. We show numerically that the oscillator’s

average energy exhibits irreversible dynamics and ‘thermal’ equilibrium at long times. We use linear response theory to

describe the dynamics at short times and we derive a condition for the absorption or dissipation of energy by the oscillator

from the chaotic system. The equilibrium properties at long times, including the average equilibrium energies and the

energy distributions, are explained with the help of statistical arguments. We also check that the concept of temperature

defined in terms of the ‘volume entropy’ agrees very well with these energy distributions.
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1. Introduction

Low-dimensional chaotic systems can, under appropriate circumstances, play the role of thermodynamical
heat baths [1–7]. If a slow system with few degrees of freedom is weakly coupled to a fast chaotic system, the
slow system’s average trajectory can dissipate energy into the chaotic one at short times.

One of the initial motivations for the consideration of low-dimensional chaotic dynamics as environments
for macroscopic systems was the work by Brown et al. [8] on the ergodic adiabatic invariant. For a chaotic
Hamiltonian system with a slowly varying parameter, the volume of the energy shell is the only adiabatic
invariant. Brown et al. showed that the first order correction to this invariant has a diffusive temporal
behavior. Besides, if such time varying parameter is thought of as a second system coupled to the chaotic one,
then this diffusive correction of the adiabatic invariant would lead to a dissipative force on the slow system [1].

This problem was again reformulated by Berry and Robbins [2] in terms of a system of interest interacting
with an environment, or ‘thermal bath’. The average force acting on the system of interest due to the coupling
with the chaotic system can be calculated in adiabatic approximation. The lowest order part of this force was
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shown to be the Born–Oppenheimer force and the next order to be a geometric magnetism type of force plus a
deterministic friction—a force proportional to the slow system’s velocity. Friction is therefore generated in the
context of small systems, without the need for the thermodynamical limit, and the chaotic nature of the
motion becomes the essential ingredient. Indeed, typical correlation functions of chaotic systems decay
exponentially with the time, as opposed to the quasi-periodic behavior observed in regular systems. Jarzynski
[4] showed later that coupling to a low-dimensional chaotic motion can also lead to a ‘thermalization’ of the
system of interest, very much like the thermalization of a Brownian particle interacting with a large thermal
bath. Finally, de Carvalho and de Aguiar [3] established a connection between de formalism developed by
Caldeira and Leggett [9] for describing dissipation via coupling with a thermal bath and via coupling with a
chaotic system.

In this paper we revisit this problem from the classical point of view and consider specific examples of two-
dimensional chaotic systems coupled to a one-dimensional oscillator. Our main purpose here is to understand
the energy flow between the system of interest, which we shall call ‘the oscillator’ and the chaotic system to
which this oscillator is coupled. We study the energy flow at short times and the approach to equilibrium at
long times. In order to consider the chaotic system as playing the role of an environment, we assume that the
only information available from this system is its initial energy. For the oscillator this implies that only
microcanonical averages of its observables (over the chaotic system variables) are accessible. Therefore, a
typical numerical calculation corresponds to fix an initial condition for the oscillator and to evolve an
ensemble of trajectories whose initial conditions for the chaotic variables are randomly selected at a fixed
(chaotic system) energy shell.

For short times our numerical simulations show that the average energy of the oscillator may increase or
decrease, absorbing energy from the chaotic system or dissipating energy into the chaotic system. The initial
energies of both systems are what ultimately dictates which of the two possibilities actually occurs. In
particular, there exists initial values of these energies such that no exchange occurs on the average. We use
linear response theory to study the energy flow in the short time limit. We show that the average motion of the
oscillator follows a Langevin type of equation with frequency-dependent friction and a quadratic correction to
the oscillator potential, similar to the Born–Oppenheimer force that appears in the adiabatic theory. We also
derive a simple condition for dissipation or absorption of energy by the oscillator involving the ratio of the
initial energies of the systems. This theoretical prediction agrees well with our numerical calculations for short
times, but it is not accurate to predict the long time behavior.

Our simulations show that, at long times, the average energy of both the oscillator and the chaotic system
tend to an equilibrium. The value of these equilibrium energies depends once again on the initial conditions.
The connection between asymptotic thermalization and initial conditions is well known for a Brownian
particle. In that case, the increase or decrease of the average energy of the particle depends on its initial energy
E0 and on the temperature T of the thermal bath. The particle absorbs energy from the reservoir if E0okBT

and loses energy into it if E04kBT , thermalizing always at kBT . Here we have a similar situation, with the
increasing or decreasing of the average energy of the oscillator depending only on its initial energy and on the
initial energy of the chaotic system. However, contrary to the case of the Brownian particle, the condition for
equilibrium at long times is generally different from the condition of no energy exchange at short times.
Despite the theoretical work of Jarzynski [4] on the long term thermalization of these systems, it is still not
clear how the asymptotic states depend on the initial conditions of both sub-systems. The energy distribution
of the sub-systems at equilibrium is also an important open issue. These distributions are not likely to be of the
Boltzmann type, since the systems are small, and they may depend not only on the initial conditions but also
on the density of states of the systems involved [10–12]. In this paper we shall derive the long time equilibrium
conditions and energy distributions explicitly for two model systems. Finally, we use the definition of
temperature proposed in Ref. [13] for small systems and check that it agrees completely with the statistical
calculation in terms of the density of states and energy distributions.

We emphasize that our approach uses the linear response theory, and no explicit assumptions on adiabatic
properties of the oscillator is required. Despite the difficulties involved in the calculation of the response
function for microcanonical ensembles, the formulation of this problem in terms of linear response theory is of
great interest for the study of its quantum analog [7]. We recall that the usual formulation of quantum
dissipation [9] involves response functions and that the adiabatic approximation leads to frustrating results in
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