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Abstract

A method based on Fourier series is presented, which allows to calculate the local stress–strain response of a three-

dimensional periodic structure subjected to a spatial average of strain. The periodicity allows the reduction of the

problem to that of a Representative Volume Element (RVE). The solution operator (which can easily be calculated

in Fourier space) is defined for a simplified problem, and it is shown that this operator may also be used for the original

problem. In order to illustrate the use of this procedure, an example problem is presented. A global error is defined and

calculated for the example problem.
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1. Introduction

We focus on the numerical solution of

hei ¼ e0; r � ðCeÞ ¼ 0; ð1Þ

defined in a three-dimensional rectangular domain
(the RVE). The tensor e0 is defined as the strain

field average hei. C is the material stiffness tensor
field, and periodic boundary conditions are

applied.

From all possible fields e only those are taken
into consideration, for which e is derived from a
displacement field u, so that e ¼ 1

2
ðruþ urÞ ¼

symðgrad uÞ holds. We use Fourier series to solve
the problem as done in [2,4–6]. The desired local

strain field (and a resulting local stress field

r = Ce) may be used for homogenization tech-
niques, for which periodic boundary conditions

show several advantages as shown in [3].
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2. Fourier coefficients/Fourier expansion of

function and derivatives

Let k = hk1, k2, k3i be the wave number vector,
and let f be a periodic function (i.e., any of the
given or desired fields) with period 2pLi in each

orthogonal direction of space xi (i = 1,2,3). The

Fourier coefficients f̂ ðkÞ and the Fourier series
expansion of a smooth 1 function f are given by:

f̂ ðkÞ ¼
Z 1

a1¼0
da1

Z 1

a2¼0
da2

Z 1

a3¼0
da3f ðaÞe�i2pk�a ¼ Fff g;

f ðaÞ ¼
X1

k1¼�1

X1
k2¼�1

X1
k3¼�1

f̂ ðkÞei2pk�a ¼ F
�1ff̂ g

with the vector a ¼ 1
2p hx1=L1; x2=L2; x3=L3i.

The Fourier series of the derivatives of the field

with respect to the spatial coordinates xi are:

of
oxj

¼
X1

k1¼�1

X1
k2¼�1

X1
k3¼�1

i

Lj
kjf̂ ðkÞei2pk�a;

of 2

oxjoxl
¼

X1
k1¼�1

X1
k2¼�1

X1
k3¼�1

� 1

LjLl
kjklf̂ ðkÞei2pk�a:

The Discrete Fourier Transform (DFT), with

which the Fourier coefficients can be calculated

approximately, is defined as follows:

f̂ k ¼
1

N 1N 2N 3

XN1�1
n1¼0

XN2�1
n2¼0

XN3�1
n3¼0

fne�i2pk�an 
 f̂ ðkÞ

with an = hn1/N1, n2/N2, n3/N3iand fn = f(an).
The discretization in each direction of space is

defined by odd numbers Ni = 2mi + 1 (with mi 2
N) and the approximation is only useful for

j ki j6 Ni�1
2
(Nyquist critical frequency). The In-

verse Discrete Fourier Transform (IDFT) is de-

fined by:

fn ¼
XN1�1
k1¼0

XN2�1
k2¼0

XN3�1
k3¼0

f̂ ke
þi2pk�an :

Once the solution of a set of differential equa-

tions has been calculated in Fourier space, the

IDFT is performed resulting in discrete values fn,

which may be interpolated by the trigonometric

polynomial:

intfn ¼
Xm1

k1¼�m1

Xm2
k2¼�m2

Xm3
k3¼�m3

f̂ ke
i2pk�a: ð2Þ

3. Problem solution

3.1. The basic problem

Consider the following problem for a fluctua-

tion field ~e with a given constant tensor C0 and
with a given field s valid in the RVE with periodic
boundary conditions:

h~ei ¼ 0; r � ðC0~eÞ ¼ r � s: ð3Þ

In order to find a function ~e ¼ symðgrad ~uÞ we
define the solution operator C by

~e ¼ Cs () ~e solves (3): ð4Þ

Note that C projects divergence-free (and in
particular constant) fields to zero. If we consider

that C0ijkm ¼ C0jikm and C0ijkm ¼ C0ijmk, C can easily
be calculated in Fourier space (see [4]), and the

solution of (3) can be written as:

~̂elm ¼ bClmopŝpo 8k 6¼ 0 and h~ei ¼ ~̂eð0Þ ¼ 0:
ð5Þ

3.2. The extended problem

Now consider the extended problem defined in

the same domain:

hei ¼ e0; r � ðC0eÞ ¼ r � s ð6Þ

with e ¼ e0 þ ~e ¼ symðgradðr � e0 þ ~uÞÞ. It can be
seen, that e = Cs + e0 is the solution of this prob-
lem, so that

êlm ¼ bClmopŝpo 8k 6¼ 0 and hei ¼ êð0Þ ¼ e0:

ð7Þ1 The convergence of the series is discussed in [1].
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