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Abstract

Elastostatic analysis of an antiplane crack in a functionally graded material (FGM) is performed by using a

hypersingular boundary integral equation method (BIEM). An exponential law is applied to describe the spatial var-

iation of the shear modulus of the FGM. A Galerkin method is applied for the numerical solution of the hypersin-

gular traction BIE. Both unidirectional and bidirectional material gradations are investigated. Stress intensity factors

for an infinite and linear elastic FGM containing a finite crack subjected to an antiplane crack-face loading are pre-

sented and discussed. The influences of the material gradients and the crack orientation on the stress intensity factors

are analyzed.
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1. Introduction

Functionally graded materials (FGMs) are pre-

ferred and favoured in many engineering struc-

tures and components due to their improved

thermal, mechanical, corrosion-resistant and

wear-resistant properties compared to the classical

engineering materials, laminates and composites.
FGMs are continuously non-homogeneous mate-

rials because the volume fractions of their compos-

ite constituents vary continuously in space. One

important issue in the design, optimization and

engineering applications of FGMs is concerned

with their fracture and fatigue properties, which

are essential to their integrity, reliability and dura-

bility [1–3]. Since the boundary value problem
arising in crack analysis of FGMs is governed by

partial differential equations with variable coeffi-

cients, many available analytical or numerical

0927-0256/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.commatsci.2004.09.002

* Corresponding author. Tel.: +49 3583 611622; fax: +49

3583 611627.

E-mail address: c.zhang@hs-zigr.de (Ch. Zhang).

URL: http://www.hs-zigr.de/~zhang.

Computational Materials Science 32 (2005) 611–619

www.elsevier.com/locate/commatsci

mailto:c.zhang@hs-zigr.de 


methods for homogeneous materials cannot be di-

rectly applied or easily extended to solve this class

of problems. The conventional finite element

method (FEM) implemented in the most com-

mercial FEM codes assumes constant material
properties within each element, which requires

consequently a very fine FE-mesh for FGMs. To

overcome this difficulty, graded finite elements

have been proposed ([4,5]). The classical boundary

element method (BEM) or boundary integral

equation method (BIEM), which has been proven

to be highly accurate and efficient for crack analy-

sis in homogeneous and linear elastic materials
([6,7]), cannot be directly applied to crack analysis

in FGMs either, since the required fundamental

solutions or Green�s functions for partial differen-
tial equations with variable coefficients can gener-

ally not be obtained in closed or simple forms. For

exponentially graded materials, elastostatic Greens

functions have been derived by Martin et al. [8]

and Chan et al. [9].
In this paper, a BIEM is presented for elasto-

static analysis of a finite crack in an infinite and

linear elastic FGM subjected to an antiplane

crack-face loading. An exponential law is used to

describe the spatial variation of the shear modulus.

Both the unidirectionally and bidirectionally

graded materials are dealt with. The boundary

value problem is formulated as a hypersingular
traction BIE. A Galerkin method is adopted for

the numerical solution of the hypersingular BIE.

Fourier-integral expressions of the required

Green�s functions are used in the BIEM. The

unknown crack-opening-displacement (COD) is

approximated by a Galerkin-ansatz consisting of

Chebyshev polynomials of second kind. The pre-

sent BIEM requires no special regularization or
integration techniques for computing the hypersin-

gular Hadamard finite-part integral. Only a single

integration is needed in spite of the application of

the Galerkin method. Numerical results are pre-

sented and discussed for both unidirectional and

bidirectional material gradations. The effects of

the material gradients and the crack orientation

on the stress intensity factors are analyzed.
The antiplane crack problem in non-homogene-

ous materials has been investigated previously by

Erdogan [10] and Chan et al. [11], who assumed

that the crack is parallel to the material gradient.

In-plane cracks in FGMs have been analyzed by

Delale and Erdogan [12], Konda and Erdogan

[13] and Zhang et al. [14]. Transient elastodynamic

analysis of an antiplane crack in a FGM has been
performed by Zhang et al. [15]. However, to the

authors knowledge, antiplane crack analysis in

unidirectional FGMs with an arbitrary crack ori-

entation or in general bidirectional FGMs as con-

sidered in this paper has yet not been presented

elsewhere.

2. Problem statement and boundary integral

equation

Consider an infinite, isotropic, continuously
non-homogeneous and linear elastic FGM con-

taining a finite crack of length 2a as depicted in

Fig. 1. The crack is subjected to an antiplane

crack-face loading. In the absence of body force,

the cracked FGM satisfies the equilibrium

equation

r3a;a ¼ 0; ð1Þ
the Hooke�s law

r3a ¼ lðxÞu3;a; ð2Þ
and the boundary condition on the crack-faces

f3ðx1; x2 ¼ 0Þ ¼ r�
32ðx1Þ; x1 2 ½�a;þa	: ð3Þ

In Eqs. (1)–(3), u3 denotes the displacement com-

ponent in the x3-direction, r3a represent the shear
stress components, l(x) is the shear modulus, f3 is
the traction component, and r�

32 is the prescribed

stress loading. Also, a comma after a quantity
stands for partial derivatives with respect to spatial

variables, and the conventional summation con-

vention over repeated indices is used.

The spatial variation of the shear modulus is de-

scribed by an exponential law of the form

lðxÞ ¼ l0e
ax1þbx2 ; ð4Þ

where l0, a and b are gradient parameters of the

FGM. The exponential law (4) is suitable for both

unidirectional and bidirectional material grada-

tions as shown in Fig. 1. By taking one of the gra-

dient parameters equals zero, a unidirectional
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