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a b s t r a c t

The internal disorder of a D-dimensional hydrogenic system, which is strongly associated
to the non-uniformity of the quantum-mechanical density of its physical states, is
investigated by means of the shape complexity in the two reciprocal spaces. This quantity,
which is the product of the disequilibrium or averaging density and the Shannon entropic
power, is mathematically expressed for both ground and excited stationary states in terms
of certain entropic functionals of Laguerre and Gegenbauer (or ultraspherical) polynomials.
We emphasize the ground and circular states, where the complexity is explicitly calculated
and discussed by means of the quantum numbers and dimensionality. Finally, the position
and momentum shape complexities are numerically discussed for various physical states
and dimensionalities, and the dimensional and Rydberg energy limits as well as their
associated uncertainty products are explicitly given. As a byproduct, it is shown that the
shape complexity of the system in a stationary state does not depend on the strength of
the Coulomb potential involved.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The hydrogenic system (i.e., a negatively-charged particle moving around a positively-charged core which electromag-
netically binds it in its orbit) with dimensionality D ≥ 1, plays a central role in D-dimensional quantum physics and chem-
istry [1,2]. It includes not only a large variety of three-dimensional physical systems (e.g., hydrogenic atoms and ions, exotic
atoms, antimatter atoms, Rydberg atoms) but also a number of nanoobjects so much useful in semiconductor nanostruc-
tures (e.g., quantum wells, wires and dots) [3,4] and quantum computation (e.g., qubits) [5,6]. Moreover it has a particular
relevance for the dimensional scaling approach in atomic and molecular physics [1] as well as in quantum cosmology [7]
and quantum field theory [8,9]. Let us also say that the existence of hydrogenic systemswith non-standard dimensionalities
has been shown for D < 3 [4] and suggested for D > 3 [10]. We should also highlight the use of D-dimensional hydrogenic
wavefunctions as complete orthonormal sets for many-body problems [11,12] in both position and momentum spaces, ex-
plicitly for three-body Coulomb systems (e.g. the hydrogen molecular ion and the helium atom); generalizations are indeed
possible in momentum-space orbitals as well as in their role as Sturmians in configuration spaces.
The internal disorder of this system, which is manifest in the non-uniformity quantum-mechanical density and in the

so distinctive hierarchy of its physical states, is being increasingly investigated beyond the root-mean-square or standard
deviation (also called Heisenberg measure) by various information-theoretic elements; first, by means of the Shannon
entropy [13–15] and then, by other individual information and/or spreading measures as the Fisher information and the
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power and logarithmicmoments [16], as is described in Ref. [17]where the information theory of D-dimensional hydrogenic
systems is reviewed in detail. Just recently, further complementary insights have been shown to be obtained in the three-
dimensional hydrogen atom by means of composite information-theoretic measures, such as the Fisher–Shannon and the
shape complexity [18,19]. In particular, Sañudo and Lopez-Ruiz [18] have found some numerical evidence that, contrary to
the energy, both the Fisher–Shannonmeasure and the shape complexity in the position space do not present any accidental
degeneracy (i.e. they do depend on the orbital quantum number l); moreover, they take on their minimal values at the
circular states (i.e., those with the highest l). In fact, the position Shannon entropy by itself has also these two characteristics
as it has been numerically pointed out long ago [13],where the dependence on themagnetic quantumnumber is additionally
studied for various physical states.
The shape complexity [20] occupies a very special position not only among the composite information-theoretic

measures in general, but also within the class of measures of complexity. This is because of the following properties:
(i) invariance under replication, translation and rescaling transformations, (ii) minimal value for the simplest probability
densities (namely, e.g. uniform and Dirac’s delta in one-dimensional case), and (iii) simple mathematical structure: it is
given as the product of the disequilibrium or averaging density and the Shannon entropy power of the system.
In this work we provide the analytical methodology to calculate the shape complexity of the stationary states of the

D-dimensional hydrogenic system in the two reciprocal position and momentum spaces and later we apply it to a special
class of physical states which includes the ground state and the circular states (i.e. states with the highest hyperangular
momenta allowed within a given electronic manifold). First, in Section 2, we briefly describe the known expressions of
the quantum-mechanical density of the system in both spaces. In Section 3 we show that the computation of the two
shape complexities for arbitrary D-dimensional hydrogenic stationary states boils down to the evaluation of some entropic
functionals of Laguerre and Gegenbauer polynomials. To have the final expressions of these complexitymeasures in terms of
the dimensionality D and the quantum numbers characterizing the physical state under consideration, we need to compute
the values of these polynomial entropic functionals what is, in general, a formidable open task. However, in Section 4, we
succeed to do it for the important cases of ground and circular states. It seems that for the latter ones the shape complexity
has the minimal values, at least in the three-dimensional case as indicated above. It is also shown that our results always
fulfil the uncertainty relation satisfied by the position and momentum shape complexities [19]. In Section 5, the shape
complexities are numerically studied and their dimensionality dependence is discussed. Finally, some conclusions are given.

2. The D-dimensional hydrogenic quantum-mechanical densities

Let us consider an electron moving in the D-dimensional Coulomb (D > 2) potential V (Er) = − Zr , where Er =
(r, θ1, θ2, . . . , θD−1) denotes the electronic vector position in polar coordinates. The stationary states of this hydrogenic
system are described by the wavefunctions

Ψn,l,{µ}
(
Er, t
)
= ψn,l,{µ}

(
Er
)
exp (−iEnt) ,

where
(
En,Ψn,l,{µ}

)
denote the physical solutions of the Schrödinger equation of the system [1,2,17]. Atomic units

(} = e = me = 1) are used throughout the paper. The energies are given by

E = −
Z2

2η2
, with η = n+

D− 3
2
; n = 1, 2, 3, . . . , (1)

and the eigenfunctions can be expressed as

Ψn,l,{µ}(Er) = Rn,l(r)Yl,{µ}(ΩD−1), (2)
where (l, {µ}) ≡ (l ≡ µ1, µ2, . . . , µD−1) ≡ (l, {µ}) denote the hyperquantum numbers associated to the angular variables
ΩD−1 ≡ (θ1, θ2, . . . , θD−1 ≡ ϕ), which may have all values consistent with the inequalities l ≡ µ1 ≥ µ2 ≥ · · · ≥ |µD−1| ≡
|m| ≥ 0. The radial function is given by

Rn,l(r) =
(
λ−D

2η

)1/2 [
ω2L+1(r̂)
r̂D−2

]1/2
L̃2L+1η−L−1(r̂), (3)

where L̃α
k (x) denotes the Laguerre polynomials of degree k and parameter α, orthonormal with respect to the weight

function ωα(x) = xαe−x, and the grand orbital angular momentum hyperquantum number L and the adimensional
parameter r̂ are

L = l+
D− 3
2

, l = 0, 1, 2, . . . and r̂ =
r
λ
, with λ =

η

2Z
. (4)

The angular part Yl,{µ}(ΩD−1) is given by the hyperspherical harmonics [2,21]

Yl,{µ}(ΩD−1) =
1
√
2π
eimϕ

D−2∏
j=1

C̃
αj+µj+1
µj−µj+1

(cos θj)
(
sin θj

)µj+1 , (5)

with αj = 1
2 (D− j− 1) and C̃

λ
k (x) denotes the orthonormal Gegenbauer polynomials of degree k and parameter λ.
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