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Abstract

We use the lattice Boltzmann method (LBM) for analysis of high and moderate Knudsen number phenomena.

Simulation results are presented for microscale Couette and Poiseuille flows. The slip velocity, nonlinear pressure drop,

and mass flow rate are compared with previous numerical results and/or experimental data. The Knudsen minimum is

successfully predicted for the first time within the LBM framework. These results validate the usage of the LBM based

commercial, arbitrary geometry code PowerFLOW for simulating nanoscale problems.
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1. Introduction

Navier–Stokes equations (NSEs) are based upon the continuum assumption, which is valid when the
characteristic length L of the system is much larger than the mean free path l of the molecules. Therefore, the
ratio of l to L, defined as the Knudsen number Kn ¼ l=L, is a natural measure of applicability of the NSEs.

In many cases involving macroscopic flows, the Kn is indeed small ðKnp0:001Þ. However, there are now
increasingly many applications where Kn is relatively large. As an example, in a micro-scale channel or
microelectromechanical systems (MEMS), Kn can reach or exceed 0:1 depending on the characteristic length
of interest, given that l ¼ 65 nm for air at room temperature. High Kn flow may also occur in a low pressure
vacuum device or at high altitude. It is known that for Kn40:001, the continuum assumption is no longer
valid and modifications to the NSEs are necessary.

The entire flow region can be categorized into several regimes based on the Kn [1]: continuum flow,
Knp10�3; slip flow, 10�3pKnp10�1; transition flow, 10�1pKnp10; free-molecule flow, Kn410. In the
above four regimes, different dynamic models can be used. Interestingly, almost all of these models are based
on or can be derived from the kinetic equation, or the molecular dynamics and the direct simulation Monte
Carlo (DSMC) [2]. For continuum flows, the first choice is still the NSEs with no-slip boundary conditions,
although the lattice Boltzmann method (LBM) is now becoming a viable alternative. NSEs with slip boundary
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conditions have been applied to describe moderate Kn regime. The first-order slip boundary condition has
been proposed by Maxwell [3]:
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where s is the so-called tangential-momentum-accommodation coefficient defined as the fraction of molecules
which are reflected diffusely. It depends on the fluid–solid interface property and can be determined
experimentally. It has been shown that the first-order slip boundary conditions are approximately valid for Kn

less than 0:1 [4]. It is possible to extend the applicable Kn a little further by adding the second-order effects to
the slip boundary conditions [4], but for Kn40:1, much more serious modifications to the NSEs must be
introduced in addition to the phenomenological slip boundary conditions, since the continuum approximation
breaks down completely.

Whereas Boltzmann equation (BE) is valid for all Kn flows, it is difficult to solve except for the free-molecule
regime, mostly because of the nonlinear collision term. Numerous approximations based on BE have been
developed. The Chapman–Enskog method has been widely used to simplify the BE, in which the BE is
expanded as a function of the Kn. The first term represents the Maxwellian equilibrium distribution function
f 0. The Euler equations can be derived from f 0 as the approximation of the distribution function. The first two
terms in Chapman–Enskog expansion, f 0 þ Knf 1, may be used to derive the NSEs, which represents a first-
order departure from the thermal equilibrium. The so-called Burnett equations can be derived from the first
three terms (f 0 þ Knf 1 þ Kn2f 2), which represents a second-order departure from equilibrium.

During the last few years, LBM has been introduced for solving slip flows [5,6]. Since LBM is directly
derived from microscopic principles, it seems to be a natural tool for studying rarefied gas dynamics. Other
advantages of LBM include low numerical diffusion, scalable performance in a parallel computing
environment, coding simplicity, and robustness in dealing with complex boundary conditions. LBM has
already had substantial impact on fundamental research and engineering applications involving hydro-
dynamics of small Kn flow [7–10].

In this paper, we apply LBM beyond the continuum regime, i.e., for flows involving Kn40:001. We first
outline some fundamentals in LBM and high Kn extensions. Simulations of Couette flow will then be
presented and the results are compared with those of the first-order modified Reynolds equation (MRE).
Simulation results for Poiseuille flows are compared with both the previous numerical results and experimental
data. We demonstrate that famous Knudsen minimum effect [11] is successfully predicted for the first time
using LBM.

2. The numerical algorithm

2.1. Outline of LBM

The most common form of the lattice Boltzmann equation (LBE) is [7,12,13]:

f iðxþ ĉiDt; tþ DtÞ � f iðx; tÞ ¼ Ci, (2)

where f i are the particle density distributions defined for a finite set of discrete particle velocity vectors
fĉi : i ¼ 0; . . . ; bg. These particle speeds define links among nodes on a given lattice. The collision term on the
right side of Eq. (2) often uses the so-called Bhatnagar–Gross–Krook (BGK) approximation [10,12–15],

Ci ¼ �
f i � f

eq
i

t
, (3)

with a single relaxation time t. Here, f
eq
i is the local equilibrium distribution function that has an

appropriately prescribed functional dependence on the local hydrodynamic properties. The basic
hydrodynamic quantities, such as fluid density r and velocity u, are obtained through moment summations
in the velocity space,

rðx; tÞ ¼
X

i

f iðx; tÞ and ruðx; tÞ ¼
X

i

ĉif iðx; tÞ. (4)
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