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A lattice-Boltzmann scheme for Cattaneo’s diffusion equation
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Abstract

A lattice-Boltzmann (LB) formulation is developed for the simulation of Cattaneo’s diffusion equation. To do this, the collision
term is computed from a 1-step back relaxation dynamics which, in turn, induces a hyperbolic-type diffusion effect. The Fickian
LB formulation is recovered in the limit as a relaxation time coefficient goes to zero.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The LB method simulates physical transport phenomena with quasi-particles populating lattices [1,2]. The method
is based on the idea that quasi-particles move across the lattice along links connecting neighboring lattice sites, and
then undergo collisions upon arrival at a lattice site. For simulating physical phenomena, the collisions among particles
must obey suitable physical laws. Thus, the fundamental problem of the LB method is to develop simplified kinetic
models that incorporate the essential physics of microscopic processes so that the macroscopic averaged properties
obey the desired laws [3,4]. Some applications of the LB method to diffusion problems have been reported in the
literature. Ponce-Dawson et al. [5] first proposed a LB approach for reaction–diffusion processes. Wolf-Gladrow [6]
derived a diffusion-based LB formulation for mathematical analysis of the problem showing that the introduction of a
relaxation time coefficient enhances the stability properties of the simulation scheme.

In the Fickian diffusion model, the particle flux N (x, t) is given by

N (x, t) = −D∂xρ(x, t) (1)

where ρ(x, t) is the density of particles. For simplicity in notation, let ∂x and ∂t be the partial spatial and time
differential operators ∂

∂x and ∂
∂t , respectively. Together with the mass balance ∂tρ(x, t) = −∂x N (x, t), the above

equation yields

∂tρ(x, t) = D∂2
x ρ(x, t). (2)

The parabolic nature of standard Fickian diffusion models leads to unphysical situations, such as infinite
propagation velocities. Cattaneo’s diffusion model is a hyperbolic equation with finite propagation velocity that
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is given as an extension of Fick’s first law, Eq. (1). In fact, Cattaneo’s constitutive equation is

tr∂t N (x, t) + N (x, t) = −D∂xρ(x, t) (3)

where tr > 0 is a given relaxation time coefficient. The corresponding diffusion equation is

tr∂
2
t ρ(x, t) + ∂tρ(x, t) = D∂2

x ρ(x, t). (4)

Notice that the standard Fickian diffusion equation is recovered as tr → 0.
Statistically, Cattaneo’s diffusion model can be derived from the Boltzmann equation [7,8]. The time-constant tr

is introduced into Cattaneo’s equation to allow relaxation dynamics in the transport process. Physically, the time
coefficient is related to the molecular relaxation processes that are occurring in the (crystalline or not) material’s
microstructure [9]. In this way, materials with more ordered microstructure, as in crystals, should display smaller
relaxation time coefficients than materials with more disordered microstructures. As we will see in the next section,
the time coefficient corresponds to the relaxation times of collisions of particles in a lattice.

Some applications of Cattaneo’s equation include inflationary cosmological models [10], heat transfer in Bernard
convection [11], and in the theory of diffusion in crystalline solids [12]. Given its physical importance, one is worried
if Cattaneo’s diffusion equation can be simulated by means of LB methods. This work focuses on this issue. An
extended LB method is presented by proposing a dynamical collision function that introduces a type of memory
effects in the diffusion process. The Fickian LB formulation is recovered in the limit as a relaxation time coefficient
goes to zero.

2. Lattice-Boltzmann formulation for Cattaneo’s equation

In order to concentrate in concepts rather than in algebraical manipulations, and for simplicity in presentation, we
will focus on the one-dimensional case. Extensions to higher dimensional cases with different lattice geometries are
straightforward.

The one-dimensional lattice case has two directions associated to the unit vectors e1 = +1 and e2 = −1. For
each lattice node located at position x , and for time t , there is an associated particle distribution function f j (x, t),
j = 1, 2. The distribution functions f1(x, t) and f2(x, t) refer to particles moving in the e1 (i.e., right) and e2 (i.e.,
left) directions, respectively. The LB equation for f j (x, t) is [3]

f j
(
x + 1xe j , t + 1t

)
− f j (x, t) = Ω j (x, t) , j = 1, 2 (5)

where 1x and 1t are spatial and time scales, and Ω j (x, t) is the so-called collision function depending of the
distribution function f j (x, t). The following assumption is behind LB methods [3,5]. The distribution function
f j (x, t) has appreciable variations only over a space scale L � 1x and a time scale T � 1t . Under these
assumptions, one can take the Taylor series expansion of the left hand side of Eq. (5) about f j (x, t) to obtain the
following expression:

f j
(
x + 1xe j , t + 1t

)
− f j (x, t) =

∞∑
k=1

1
k!

(
1t∂t + 1xe j∂x

)k f j (x, t). (6)

Using the following normalized variables

y =
x

L
; τ =

t

T
(7)

allows us to rewrite Eq. (6) as follows:

∞∑
k=1

1
k!

(
1t

T
∂τ +

1x

L
e j∂y

)k

ϕ j (y, τ ) = Ψ j (y, τ ) (8)

where

ϕ j (y, τ ) ≡ f j (Ly, T τ)

Ψ j (y, τ ) ≡ Ω j (Ly, T τ).
(9)
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