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Abstract

We study the effects of the rate of replacement of dead cells by either healthy cells or by infected cells on HIV infection
dynamics through a graph-theoretic approach. Our framework takes into account a reasonable amount of the immune action to any
pathogen and the local cell interactions that occur in the lymph nodes. Our results, in an extremal case where dead cells are highly
likely to be replaced by healthy cells, show that all cells become healthy in a finite number of steps of given order and infection
stops propagating. Further, for this extremal case, we give an algebraic formula for the number of infected cells at any given time
in the HIV progression. We also find a sufficient condition, determined by dead cell replacement rate, which guarantees that an
infected patient is continually positive, and give bounds on the number of infected, healthy and dead cells at any given time. We
apply our theoretical results to a recently proposed model of the HIV infection dynamics.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Experimental evidence [3,8] supports that vast majority of HIV infection occurs in the lymph nodes, where HIV-
infectible CD4™" T cells are densely packed. Only about 2% of the T cells are located in the blood. A lymph node
has a mesh structure with different sites or voids which are potential sites of cells. It has been suggested [9,6] that
viral propagation is determined purely by the lymph node geometry. Numerous researchers have interpreted the mesh
structure of the lymph node differently; Refs. [10,7,1] depict the mesh structure as a square lattice, whereas Refs. [9,
6] approximate the mesh structure by a simple three-dimensional cubic lattice. The sites of the lymph node have three
states; a site can be occupied by a healthy cell, infected cell or a dead cell. It is folklore that viral populations can
only grow by infecting and using a host cell’s machinery and metabolism to replicate. In the HIV replicative cycle,
the virus enters the cell via the latter’s receptors. This is followed by the release of the HIV capsid into the cell which
in turn activates reverse transcription culminating in at least one mutation of the virus and hence producing a new
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Fig. 1. Example for applying the rules with R = 3; w = white, r = red, b = black.

strain of the virus. The cell then dies releasing the new strain of virions all of which attach to and infect neighbouring
cells [9].

The propagation of the virus in the discrete time steps is governed by the following transitional rules.
R1: A healthy cell becomes infected if it has at least one infected neighbour; otherwise it stays healthy. This rule
mimics the spread of HIV infection by contact [10,9,6] and, in conjunction with R2 below, incorporates the virus
construction and its replication.

R2: An infected cell dies in the next time step. This rule simulates the depletion of infected cells by the immune
action [10,9,6] or direct killing of the cell by the virus.

R3: A dead cell is replaced by an infected cell if it has at least R infected neighbours; otherwise it is replaced by
a healthy cell. This rule is justified by the fact that sites with dead cells are repopulated by diffusion or division of
neighbouring cells or by activation of latent infected cells [10,9]. Therefore, the status of neighbouring cells of a dead
cell influences the status of the replacing cell.

The initial configuration is composed of healthy cells with a small fraction of infected cells. In this paper we inves-
tigate, using graph-theoretic methods, how the changes in R determine the propagation dynamics of the HIV virus.

2. Results

A graph G = (V, E) consists of a finite set V = V (G) of vertices together with a set E = E(G) of edges joining
certain pairs of vertices of G. The degree deg(v) of a vertex v of G is the number of edges incident with v and the
minimum degree §(G) of G is the minimum of the degree of the vertices in G. The distance d(u, v) between vertices
u and v in G is defined as the length of a shortest path joining # and v in G. For a subset § € V(G) and a vertex v
of G the distance d (v, S) between v and S is defined as the minimum value of d(v, x), x € S. The wheel graph is a
graph obtained by joining a new vertex to every vertex of the cycle graph.

We model the above situation by a graph G as follows. The vertex set of G is the set of sites of the lymph nodes
and two vertices are joined by an edge if and only if the corresponding sites in the lymph nodes are neighbours. We
arbitrarily color the vertices of G using three colors, white, red and black. The colors signify a site of the lymph node
occupied by a healthy, infected and dead cell, respectively. Now consider the following game played on G. A move
consists of an update of the colors of the vertices in a synchronized parallel way, according to the following rules:
G1: A white vertex changes its color to red if it has at least one red neighbour.

G2: A red vertex changes its color to black.
G3: A black vertex is colored red if it has at least R red neighbours; otherwise it is colored white.

Clearly, 0 < R < |V| — 1. Initially at time O some vertices of G are colored white and some red, and no black
vertices are present. For an example, see Fig. 1.

Here and in the sequel S is a subset of V consisting of all vertices of G colored red in the initial configuration
and s is the cardinality of S. Note that in practice, S represents the set of infected sites in the initial contamination.
Further, for each discrete time #, r(¢), w(t), b(t) are the numbers of vertices colored red, white and black respectively,
at time 7. So for example, if S = V, then r(¢) = O for all ¥ > 1. We also use the following notations. The integer

e = e(S) is the maximum value of d(x, S), x € V. For each integeri = 0,1,2,...,e, let N; denote the set
N; ={x € V| d(x,S) =i} and k; be its cardinality. So for t > e, N; = (. It is elementary to show that fori # j,
N; N N; = { and that no vertex in N; has a neighbour in N;;>,i = 0,1, ..., e — 2. We remark here that if more

properties of G, such as degree conditions, are known, then more can be said about the k;s. For a vertex v, c;(v)
denotes the color of v at time ¢. If B C V is such that all its vertices have the same color y, say, at time ¢, we write

ci(B) =y.
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