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Modelling dynamic softening processes during hot working
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Abstract

This paper models the kinetics of dynamic recovery and recrystallization under hot working conditions. For doing so, the first-order kinetics
equation is coupled with a thermo-viscoplastic finite element analysis to determine the kinetics of dynamic softening processes at different
points of deforming metal. The proposed model can consider the effects of macro parameters, such as temperature and strain rate variations
as well as the influences of microparameters as initial grain size on the rate of dynamic softening processes.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The modelling of dynamic softening mechanisms, such as
dynamic recovery and dynamic recrystallization, is of great
importance in controlling of the microstructure as well as
the flow stress of material during hot deformation[1]. In
this regard, several models have been proposed to assess the
kinetics of dynamic recrystallization and recovery during hot
forming for various engineering alloys especially steels[2].
Dynamic recrystallization of austenite in low alloy steels has
been modelled by Medina and Hernandez[3]. They utilized
single hit hot torsion tests to derive the kinetic parameters of
dynamic recrystallization and then, by the aid of Avarmi’s
equation the rate of this transformation for various kinds of
alloy steels have been evaluated. Also, in other research works
a similar trend has been employed to evaluate the recrystal-
lization behavior for different kinds of steels[4–6]. Pusseg-
ona et al.[7] have studied dynamic recrystallization through
physical modelling of a rolling line. In this work, flow behav-
ior and developed microstructure of four kinds of alloy steel
were taken into account by employing multi-stage hot torsion
experiments. The effect of dynamic recovery and recrystal-
lization on flow behavior during hot deformation processes
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has been investigated in several research works[8–12]. In
these works, two different approaches have been used. One
concerns with utilizing hot torsion or hot compression experi-
ments and direct observation of the developed microstructure
and flow stress of deformed metal and then developing experi-
mental relationships for describing dynamic recrystallization
rate. The other approach deals with the mathematical mod-
elling of dynamic recovery and recrystallization through the
theories of phase transformations[9,11]. The main equa-
tions used in this category are Avrami and hyperbolic sine
equations. It should be noted that in all published works, the
derived equations are appropriate for the isothermal and con-
stant strain rate conditions and the occurrence of dynamic
softening processes and their progress have been assumed
homogenous within the deforming metal. While in practice,
both temperature and strain rate are varying as well as there
are distributions of temperature and strain within the metal.
So, the rate of dynamic recovery and recrystallization alter at
different points of the metal.

In this work, by means of a thermo-viscoplastic finite ele-
ment model and coupling it with a kinetic model based on
the assumption of first-order reaction the kinetics of dynamic
recovery and dynamic recrystallization are predicted. The
model can be employed under real deformation conditions
where temperature and strain rate vary as well as the effects
of various process parameters, such as deformation speed,
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initial temperature and interface heat transfer coefficient,
can be evaluated. To validate the modelling results, non-
isothermal experiments have been conducted and in this way,
load–stroke and time–temperature curves are determined and
compared with predicted ones.

2. Mathematical model

For evaluating the deformation conditions at each time
step, a finite element analysis is coupled with the phase
transformation ones. In this method, the basic idea includes
minimization of the energy functional of the deforming body
[17,18]. The principle equations for determining temperature
and velocity fields are described as follows:
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whereρw, c and k are density, specific heat and thermal
conductivity of the metal, respectively, andWi is weighting
function. This function controls the form of error distribu-
tion over each element and is usually chosen to be the same
as approximating function used to describe temperature field
[18]. qn is the heat flux at boundary surface, ˙q represents
the volumetric rate of heat of deformation,σ̄and˙̄ε are effec-
tive stress and effective strain rate, respectively. During hot
working, dynamic recovery and recrystallization are possi-
ble softening mechanisms that can affect the flow behavior
as well as the microstructure of the deforming body. In this
work to determine the kinetics of dynamic recovery, the pro-
posed equation by Kocks[13] for variation of dislocation
density is employed.

dρ

dε
= k1ρ

1/2 − k2ρ (3)

whereρ is the dislocation density, andk1 andk2 represent the
rates of dislocation storage and recovery, respectively. Uti-
lizing the classic relationship between stress and dislocation
density, the variation of flow stress due to dynamic recovery
during hot deformation can be expressed as follows:

2
dσ

dε
= k1(αGb) − k2σ, σ = σ0 atε = 0 (4)

In this equation,k1 can be evaluated as 2(θII /G)(αb)−1, where
θII may be estimated as a function of temperature[13]. While
k2 is a function of deformation conditions (temperature and
strain rate)[13] and can be determine through experiments.
For doing so, one may use Eq.(2)when the flow stress reaches
to the steady-state situation, dσ/dε = 0, under this circum-

stance,k2 can be determined as below:

k2 = k1(αGb)

σRec
(5)

Here,σRec is the saturated flow stress due to dynamic recov-
ery that can be assesses by the stress–strain curves. This
parameter can be expressed by the following relationship[3]:

σRec = Ad
q
0zm (6)

whered0 is the initial austenite grain size,A, q andm the
material constants andz is the Zener–Hollomon parameter,
i.e.

z = ε̇ exp

(
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RT

)
(7)

whereT is absolute temperature,R the gas constant,Qdef
the apparent hot deformation activation energy andε̇ is the
applied strain rate.

Note that Eq.(4) is a differential equation that can be
solved by the aid of numerical techniques as modified Newton
scheme. On the other hand, to assess the kinetics of dynamic
recrystallization, this process can be treated as a first-order
transformation equation[14].

dXd

dε
= kdε

nd−1(1 − Xd), Xd = 0 atε = εc (8)

while its effect on the flow stress can be evaluated by:

σ = σRec− Xd(σp − σRex) (9)

whereXd andkd are volume fraction of recrystallized phase
and rate parameter, respectively.σRex andσP are the steady-
state flow stresses due to dynamic recrystallization and peak
stress, respectively. The above equation can be solved by
the aid of a simple integration if the deformation condi-
tions do not vary during recrystallization which, in this case,
yields Avarmi’s equation[1]. However, in hot working con-
ditions both temperature and strain rate are changing so that,
kd varies during hot deformation[15]. Under this circum-
stance, Eq.(8) is non-linear and a finite difference method
can be employed to solve this equation. In this approach,
using Taylor’s expansion and difference approximation, the
above ordinary differential equation can be reduced to an
equation ignoring the high-order terms[16]:

xp+1(εn) ∼= x(εn − �ε) + �t

2
[x(εn − �ε) + xp(εn)] (10)

Here,�ε is the strain increment,x(εn) andx(εn − �ε) the
volume fractions at thenth and (n − 1)th steps, respectively,
and p describes iteration number. To calculate the volume
fraction at each new step an iterative procedure should be
adopted because of the implicit form of the above equation.

Eqs.(1) and(2) should be solved simultaneously to calcu-
late the temperature and strain fields. In addition, to determine
flow stress of deforming metal and to evaluate the kinetics
of dynamic recovery and recrystallization Eq.(4) (or Eq.(8)
whenε ≥ εc should be coupled with Eqs.(11) and(12). For
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