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Dynamics of a bulk metallic glass Cu60Zr20Hf10Ti10
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Abstract

Computations of the frequencies of the longitudinal and transverse phonon modes in a quaternary bulk metallic glass (Cu60Zr20Hf10Ti10)
based on a simple model approach have been presented. The model assumes a central force, effective between the nearest neighbours and a
volume dependent force. Both types of excitations of phonons are computed for the bulk metallic glass for the first time both for self-consistent
screening of conduction electrons with and without the inclusion of correlation effects. Phonon frequency expressions reproduce the main
characteristic features of the dispersion curves.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

With the advent of metallic glasses[1], a new era was
opened in the field of materials science. Metallic glasses
show an excellent combination of their mechanical, chem-
ical, magnetic and electrical properties[2–5], which is far
superior to the crystalline alloys of identical composition.
The cooling rate required for these materials was very high,
of the order of 106 K s−1, thereby restricting the specimen
geometry to thin ribbons, foils and powders, where at least
one-dimension was small enough, to the order of microns, to
permit such a high cooling rate. The promising attributes of
metallic glasses have led scientists and engineers to dream
of new alloys that would form glasses at low cooling rates
like oxide glasses, which would enable their production in
bulk form. This dream was turned into a reality by the pio-
neering investigations of Inoue et al.[6]. Turnbull’s criterion
[7] has played a key role in the development of metallic
glasses including metallic glasses in bulk, i.e. bulk metallic
glasses (BMGs). BMGs have emerged over the past 16 years
with attractive properties and technological promise[8,9].
Several significant contributions have come from Johnson’s
group at Caltech, USA[10,11], where the pioneering inves-
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tigations of Duwez gave birth to the field of metallic glass
[1]. The acoustic, elastic and thermal properties of metal-
lic glasses are closely related to their binding nature and
vibrational characteristics[12–14]. The acoustic and elas-
tic properties as well as vibrational features in the metallic
glasses are poorly understood. A fundamental understand-
ing of micro-structural configuration in amorphous solids
is not as developed as in the crystalline solids. The bulk
metallic glasses (BMGs) make them in the form suitable
for measurements of elastic wave propagation. If one arbi-
trarily defines the millimeter scale as ‘bulk’, the first bulk
metallic glass was the ternary Pd–Cu–Si alloy prepared by
Chen[15]. Agarwal and Kachhava[16,17]computed phonon
frequencies and their dependence on dielectric screening of
the ternary metallic glass Pd77.5Si16.5Cu6 for the first time.
The simple model[18] is extended here for the quaternary
BMG Cu60Zr20Hf10Ti10 for the first time for the computa-
tion of phonon eigen-frequencies both for the transverse and
the longitudinal modes of vibration with and without includ-
ing correlation effects. This simple model assumes a central
force, effective between nearest neighbours and a volume
dependent force due to conduction electrons. This system is
assumed to be a mixed structure of fcc and hcp structure in
the proportionate portion to the constituents.

The understanding of the vibrational dynamics is a pre-
requisite to any understanding of thermodynamic, transport
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and other properties of condensed systems on a microscopic
level[19]. In our present work, we would like to study one of
the dynamical properties–dispersion relation. There are three
main theoretical approaches to derive the phonon frequen-
cies of the metallic glasses. In one approach, Hubbard and
Beeby[20] have derived expressions for the longitudinal and
transverse phonon frequencies on the basis of the physical
argument that the product of the static pair correlation func-
tion and the second-order derivative of the potential is peaked
near the hard-core radius. They studied the collective motion
in liquids as a generalization of phonon theory of solids using
random phase approximation. In another approach, Takeno
and Goda[21] have expressed phonon eigen-frequencies in
terms of many body correlation functions of atoms and inter-
atomic potentials in amorphous solids. Apart from these two
approaches as a third approach Bhatia and Singh[18] have
proposed a phenomenological model to obtain the longitudi-
nal and transverse phonon dispersion in a one-component
metallic glass and amorphous materials. All these three
approaches have been widely utilized to study the phonon
dispersion and collective excitations in metallic glasses; how-
ever, the simple model approach given by Bhatia and Singh
[18] is found better for providing significant understanding
of the structure of the amorphous binary system of transition
metals by Agarwal et al.[22] for Cu57Zr43 and by Lad and
Pratap[23] for Zr–Ni alloys. Pratap et al.[24] have recently
derived phonon frequencies of the Cu57Zr43 system using the
other two approaches; still the simple model approach under
consideration[22] seems to be closer to the results obtained
by Kobayashi and Takeuchi[25] using a recursion method.
These observations have motivated the author to extend this
approach to the quaternary system.

2. Theory

The longitudinal phonon frequencies (ωL) and transverse
phonon frequencies (ωT) are, respectively, given by[18]:
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whereN is the coordination number,a is the nearest neighbour
distance andρ = niM is the mean atomic density in whichM
is the mean atomic mass defined as:

M = 0.60 times the atomic mass of Cu

+0.20 times the atomic mass of Zr

+0.10 times the atomic mass of Hf

+0.10 times the atomic mass of P (3)

andni is the ion density. For hcp structure,ni = 4/(
√

3a3y)
with y = c/a ratio and for fcc structure,ni = √

2/a3. In
the quaternary glassy system under consideration, Cu is of
fcc structure with concentrationCA while other three con-
stituents Zr, Hf and Ti are of hcp structure with concentrations
CB, CC andCD, respectively, in pure form. Then,ni can be
written as:
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β, δ andκe are force constants.β andδ are defined in the
terms of the inter-atomic potentialW(r), as:
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The conduction electron screening to the inter-atomic
potential is represented by the Thomas–Fermi screening
length defined in terms of chargee and massm of electron
as:
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Then, the relevant force constantκe due to the conduction
electrons on the basis of the Thomas–Fermi model can be
derived as:

κe = 4πnenize
2
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wherene is the electron density so thatne = niz andz is the
mean valence of the glassy system. In Eq.(1), ε(q) is the
self-consistent dielectric screening function[26]:
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wherekF = (3π2ne)1/3 is the Fermi wave number.
To incorporate the correlation effects inε(q), (9) is modi-

fied to the form:
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wheref(q) is given by Hubbard[27]:
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The cancellation effects of kinetic and potential energies
inside the core of the ions, making the effective potential weak
in the core, give a shape factor, [G(qrs)]2, to be multiplied
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