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Periodic attractors of random truncator maps
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Abstract

This paper introduces the truncator map as a dynamical system on the space of configurations of an interacting particle

system. We represent the symbolic dynamics generated by this system as a non-commutative algebra and classify its

periodic orbits using properties of endomorphisms of the resulting algebraic structure. A stochastic model is constructed

on these endomorphisms, which leads to the classification of the distribution of periodic orbits for random truncator maps.

This framework is applied to investigate the periodic transitions of Bornholdt’s spin market model.
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1. Introduction

Many situations in behavioral economics and finance involve the evolution of binary opinion allocations
across a set of interacting agents. In this paper we define a particular type of dynamic on such opinion
configurations, called the truncator map, and study its recurrence properties. The proposed framework
describes the dynamics as an algebraic object, where the interaction potential is represented as the action of
one configuarion on another. In this manner, opinion allocations adjust to one another and ultimately
converge to various attractors. Our goal here is to characterize the periodic orbits of such opinion dynamics.

We proceed to define a Markov chain and represent the periodic orbits as solutions to first passage
problems for the Markov generators. Throughout the paper, the algebraic structures we introduce help
classify the interaction potentials that in turn define different models of opinion evolution. We begin by
introducing the truncator map and relevant notation, and proceed to describe the ring structure underlying
our model. The following section presents some partial results in an attempt to solve polynomial equations in
the opinion ring. In the next section we randomize the interaction potential to arrive at a Markov chain
representation of the dynamics, while the last section specializes this approach to a concrete stochastic market
microstructure model.
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2. Model description

Let O ¼ ½�1; 1�N for some positive dimension N and consider a set fSjg
M
j¼1 of mutually exclusive and

exhaustive subsets of O. A typical example will be the generalized quadrants, i.e.,

Sj ¼ x 2 OjsgnðxiÞ ¼ ai; 1pipN and
XN�1
i¼0

aiþ12
i ¼ 2N þ 1� 2j

( )
,

where the unique set fð1� aN Þ=2; ð1� aN�1Þ=2; . . . ; ð1� a1Þ=2g denotes the binary decomposition of the
integer j � 1oM.

Given a mapping f : O�!O, we define the truncator map as the following discrete dynamical system:

xðnþ 1Þi ¼ xðnÞi sgnðf ðxðnÞÞiÞ, (2.1)

where sgnx ¼ limk!1 tanhðkxÞ. In this paper, we specialize to the case of shuffling maps, i.e., f which can be
expressed as a set of invertible operators Aj associated with each component Sj of O.

Specifically, consider the finite group [15] G ¼ f1; 2; . . . ;Mg endowed with a commutative operation � such
that, for every g 2 G, g � g ¼ 1. This group is naturally isomorphic to the cyclic product group Z2 � Z2 �

� � � � Z2 of M factors, which can be represented as a modulo multiplication group Mn for some large enough n

such that fðnÞ ¼M, where f is the Euler totient function. In this setting, assign an orientation reversing
invertible ‘1 isometry Aj to each component Sj of O, with the property that AjðSiÞ ¼ Si�j. The associated
shuffling map is given by a mapping j : G�!G such that f jSi

¼ AjðiÞ. Using this notation, the resulting
truncator dynamics can be described as

xðnþ 1Þ ¼
XM
i¼1

AjðiÞðxðnÞÞ1Si
ðxðnÞÞ. (2.2)

These dynamics arise in a variety of settings [1–3]. We were driven to study the truncator dynamics because
they represent the frozen phase limit (b!1) of a class of interacting particle systems describing economic
interactions and opinion formation [4–7]. In this setting, the points x represent configurations of a spin
network and the shuffling map represents the interaction Hamiltonian that describes the influence of local and
global effects to the flipping of individual spins.

Another setting where such truncator dynamics arise is that of random Boolean networks [16,17]. Often
such models are used to describe regulatory networks (e.g. genetic or metabolic networks in biology [8–10,18])
and they are also used to describe instances of the satisfiability problem [11]. In this latter setting, global
optimization algorithms are constructed to flip the values of Boolean variables populating the nodes of a
graph in such a way as to maximize the probability that the clauses represented by the graph connections are
simultaneously satisfied.

Our goal in this paper is to characterize the periodic attractors of the truncator map. Specifically we
consider random endomorphisms of G [12,13] and derive the distribution of periodic orbits of the resulting
random truncator dynamics. Of course the full truncator map (2.1) is generically chaotic [14], because there is
sensitivity to initial conditions in the neighborhood of the boundaries between the components Sj (e.g. the
axes, when the components are generalized quadrants). Here we will restrict our attention to shuffling maps
and the resulting restricted truncator dynamics (2.2) which captures the spectrum of periodic attractors. In a
later step we plan to use this analysis as a building block for understanding the transitions between the basins
of attraction of the periodic attractors we describe here.

3. Algebraic dynamics

In order to better describe the orbits of (2.2) we define a new, non-commutative operation on G. This
operation encodes the action of the shuffling map j on G:

g1 � g2 ¼ g1 � jðg2Þ. (3.1)
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