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Dislocation pile-ups, slip-bands, ellipsoids, and cracks
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Abstract

The classic theories of dislocation pile-ups, initiated by Eshelby, Frank and Nabarro, and by Leibfried, can be greatly simplified if it is
recognised that the dislocations in the pile-up will experience uniform stress if they are lodged in an ellipsoidal interface. Elementary algebra
then produces the familiar results from continuum theory. It seems possible that the ellipsoid construction may represent physical reality if it
is taken to represent a three-dimensional slip-band. If so, there are concentrated forces spreading the band perpendicular to the slip band as
well as parallel to it. Such ellipsoids also represent Mode II and Mode III cracks, and give a method for dealing with the more complicated
Mode I cracks.
© 2005 Elsevier B.V. All rights reserved.
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1. Eshelby’s theorem

Eshelby[1] famously proved that the stress field inside an
ellipsoidal inclusion which has undergone a uniform transfor-
mation strain is uniform. This is true for any linearly elastic
body: it need not be elastically isotropic[2–4]. More recently,
in a series of papers, Markenscoff[5], has proved essentially
the inverse theorem: if, in a region contained within an inter-
nally stressed body there is a uniform stress, then the region
must be ellipsoidal in shape. The proof, which is couched
in mathematical terminology, can perhaps be summarised as
follows: (i) Both strain and stress are derived from gradients
of elastic displacement. Thus, elastic displacement can be
regarded as a kind of potential for stress and strain. If the dis-
placement varies linearly with position, both stress and strain
are constant. (ii) At the interface between the inclusion and
the matrix, the displacement must be continuous. This places
a constraint on the shape of the interface. For example, sup-
pose the inclusion were a cube with displacements parallel
to one side. Then at a corner the normal component of the
displacement would be discontinuous: it would not be possi-
ble there to match the inner and outer fields without building
in a singularity such as a dislocation, which would introduce
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long range spatially varying stresses leaking into the cube.
(iii) Consider just the normal component of the displacement
at the interface. If the normal to the interface varies other than
linearly with position, then in the interface the displacement
too will not vary linearly, and it will not be possible to match
it to a uniform internal strain field. (iv) A linearly varying
surface normal is produced only by a quadratic surface, and
the only closed quadratic surface is an ellipsoid.

The proof is thus very subtle, and requires a distinction
to be made between the type of interfacial singularity intro-
duced by continuous distributions of dislocations and that
by single dislocations with isolated cores. However, it seems
clear enough that the ellipsoid plays a unique role in inclusion
problems, rather like the elliptical planetary orbit in Newto-
nian physics.

2. Slip bands, pile-ups, and ellipsoids

It is widely agreed that slip bands form suddenly and
spread quickly, in a time of the order of microseconds. Slip
bands require the co-ordinated motion of several dislocations
on neighbouring slip planes. A plausible picture is that in a
band the multiplication of glide dislocations is accompanied
by their rapid motion under the influence of the applied stress.
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However, the freely slipping dislocations run into obstacles,
on which they exert a highly concentrated force, proportional
to their number. They also cause stress to build up on sec-
ondary slip systems, which if activated, produce a forest of
obstacles. The forest of secondary dislocations acts like an
almost instantaneously produced friction stress. They harden
the slip band and relieve the stress.

If, at the moment when the glide dislocations are brought
to a halt, one can think of them as experiencing a constant
stress, namely zero, then the Eshelby theorem states that they
must form an ellipsoidal inclusion. Traditionally, based on the
work of Eshelby et al.[6], the halted dislocations are treated
as a planar pile-up in which the force on each dislocation in
the pile-up is zero because the force due to the applied stress is
balanced by the stresses from other dislocations in the pile-up.
A planar pile-up can be regarded as an ellipsoidal inclusion
with zero aspect ratio. Only in an ellipsoidal slip band can
the uniform stress resulting from the plastic strain be made to
balance the applied stress. The notion that the slip band can
be treated as an ellipsoidal inclusion in three dimensions is,
thus, a generalisation of the earlier two-dimensional models.

Fig. 1shows an ellipsoidal inclusion which we imagine to
be a model of a freshly formed slip band on thex–y plane.
The glide dislocations of Burgers vectorb may be imagined
to have a uniform spacingh perpendicular to the crystallo-
graphic slip planes. The plastic engineering shear strain in
the bandeP

13 is twice the tensor strainεP
13 and is given by

eP
13 = 2εP

13 = b

h
. (1)

These glide dislocations are ‘geometrically necessary dis-
locations’ which bound the slipped region of the glide band.
On a scale greater than the separation of the crystallographic
slip planes, they produce a uniform plastic shear, so if the in-
clusion is ellipsoidal the stress they produce in the interface
is uniform and can be made equal and opposite to the applied
stress.

We can now use the elementary properties of the ellipse in
Fig. 1 to calculate the dislocation distribution. The equation

Fig. 1. An ellipsoidal slip band, semi-axesa andc, confined by obstacles.
The dislocations are spaced uniformly in the vertical axis by a distance
h. To calculate the escape pressure on the obstacles, all the dislocations
are imagined to move an infinitesimal distanceδa. The concentrated stress
resulting from the fixed pile-up is calculated as a function of the distances,
measured from the tip of the band.

of the ellipse is (x/a)2 + (z/c)2 = 1. The number of disloca-
tions per unit length in the direction perpendicular to the slip
band,n(z), is constant, namely 1/h. The distribution projected
onto thea-axis of the ellipse is given by

n(x) = 2n(z)
dz

dx
= 2cx

ha
√

a2 − x2
. (2)

This gives us the dislocation distribution. The total number
of dislocations on one side of the ellipse is

N = 2c

h
. (3)

All that remains now is to calculate the relationship be-
tween the number of dislocations and the applied stress. To
do this, we have recourse to the Eshelby model. In the con-
strained shear band, one which is embedded in the matrix
which contains the obstacles to its propagation, there is uni-
formly zero shear stress, thus,

σA + σC = σA − 2µγεP = 0. (4)

That is, the sum of the applied stress,σA, plus the stress
resulting from the change in shape of the ellipsoid, the con-
strained stress,σC, is zero. Values of the Eshelby accom-
modation factorγ which relates the transformation strain to
the constrained stress can be found in the paper by Brown
and Clarke[7]. Three cases of interest can be treated with-
out difficulty: pile-ups of straight edge dislocations, pile-
ups of straight screw dislocations, and pile-ups of circular
loops against a circular obstacle. For straight dislocations,
we are concerned with ribbon-shaped inclusions of ellipti-
cal cross-section, and for circular pile-ups we are concerned
with penny-shaped inclusions, of radiusR. In the case of edge
dislocations,γ = c/(1 − ν)a. For screw dislocations, the fac-
tor (1− ν) is missing; for penny-shaped inclusions there is
a more complicated expression. If these values are inserted
into Eqs.(4) and(1) is used for the plastic strain, one finds
the total number of dislocations as a function of the applied
stress. The results are:

NEDGE = 2a(1 − ν)σA

µb
, NSCREW= 2aσA

µb
, and

NCIRCULAR = 8R(1 − ν)σA

π(2 − ν)µb
. (5)

These are the standard results for planar pile-ups, as first
obtained by Leibfried[8] and presented by many other au-
thors, see for example, Hirth and Lothe[9]. What is new here
is that the ellipsoidal pile-up gives identical results, provided
the aspect ratioc/a is small enough that powers higher than
one can be neglected. The argument depends only on the
assumption that there are several notional slip planes paral-
lel to the major axis of the ellipse. But if there is only one,
and the slip band degenerates into a planar pile-up, the re-
sulting formulae are still correct. In the ellipsoidal slip band,
the number of dislocations is conveniently thought of as the
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