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Metastablity of the undissociated state of dissociated dislocations
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Abstract

Undissociated, metastable dislocations have been observed in various crystals in addition to stable dissociated dislocations by high-resolution
transmission electron microscopy. The origin of the metastablity of the undissociated state has been discussed specifically for the dissociation
into Shockley partial dislocations in fcc or hcp lattice. It is shown that the metastability is due either to a high Peierls–Nabarro stress larger
than a few percent of the shear modulus of the partial dislocations and/or to the increase of the total core energy by an increase of the dangling
bonds. The metastablity of undissociated dislocations in zincblende III–V compounds is concluded to be due to a contribution of the latter
effect.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It is well established that dislocations in crystals are
dissociated into partial dislocations bounding a stacking
fault between them when there exists a stable stacking fault
in the crystal. The separation between the partials or the
dissociation widthw is determined so as to minimize the
total energy or by the balance between the repulsive force
of the partials and the surface tension of the stacking fault.
Electron microscopy observation of dislocations has shown,
however, that in many occasions undissociated dislocations
are also present in addition to the dissociated dislocations.
Long constricted segments have been observed in Si by
weak-beam technique[1]. Both dissociated and undissoci-
ated core structures have been observed by high-resolution
electron microscopy for III–V compounds of GaAs[2,3],
InP[4] and GaN[5], for II–VI compounds of CdS, CdSe[6]
and ZnO[7]. These observations indicate that undissociated
state can be metastable for the stable dissociated dislocation.
In this paper, we discuss the origin of the metastability of
the undissociated state.
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2. Strain energy consideration

The energy of a perfect dislocation can be represented by
the sum of the elastic energy outside the core radiusrc where
the elastic strain can be described by the linear elasticity the-
ory, and the core energy inside the radiusrc. The value ofrc
is (2–3)b, whereb is the strength of the Burgers vector of the
dislocation. Assuming elastic isotropy, the elastic energy is
expressed as:

Eel = KGb2

4π
ln

R

rc
, (1)

whereR is the outer-cutoff radius which is of the order of the
average dislocation spacing in the crystal,G the shear modu-
lus of the crystal and the factorK depends on the dislocation
character:K = 1 for screw dislocation andK = (1− ν)−1 (ν:
Poisson’s ratio) for edge dislocation. The core energy de-
pends on the type of the crystal and cannot be expressed in a
universal way; so that the core energy contribution is usually
incorporated in the total energy by using an effective cutoff
parameterr0 (<rc) and thus the total energyEu (subscript u
stands for undissociated dislocation) is written as:

Eu = KGb2

4π
ln

R

r0
. (2)
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In metallic crystalsr0 is aboutb/3 [8–11]. In real situations,
the outer-cutoff radius is variable and so we may regardR/r0
in Eq.(2) a variable parameter. For a typical dislocation den-
sity of 106 cm−2, R/r0 ≈ 105.

The total energy of a dissociated dislocation is the sum of
the self-energies of the two partial dislocations, the interac-
tion energy between the partial dislocations and the energy
of the stacking fault between the partials. Letb1 andb2 be
the strength of the partial Burgers vector,θ1 andθ2 be the
angle between the dislocation line and the Burgers vector of
partial 1 and partial 2, respectively, andΓ be the stacking
fault energy per unit area andx the distance between the par-
tial 1 and partial 2. Then, the total energy of the dissociated
dislocationEd (subscript d stands for dissociated dislocation)
is given as:

Ed(x) = K1Gb1
2

4π
ln

R

r′
0

+ K2Gb2
2

4π
ln

R

r′
0

+ βGb1b2

2π
ln

R

x
+ Γx with

K1,2 = 1 − ν cos2 θ1,2

1 − ν

β = cosθ1 cosθ2 + 1

1 − ν
sinθ1 sinθ2. (3)

The equilibrium widthw of the dissociated dislocation is
determined by the condition dEd(x)/dx= 0, which gives

w = βGb1b2

2πΓ
. (4)

We should note that the interaction energy term in Eq.(3)
is valid only forx larger than the core radiusr′

c for partials,
where the linear elasticity theory can apply.

Now, we consider the energy change in the dissociation
process of an undissociated dislocation into partial disloca-
tions. In the following, we treat the most popular dissociation
scheme of Heidenreich–Shockley extended dislocation in fcc
and hcp lattices, i.e., the dissociation into Shockley partial
dislocations, which is represented by the following equation
for the case of fcc crystals.

1

2
[1 1 0] = 1

6
[2 1 1] + stacking fault+ 1

6
[1 21̄] (5)

In the numerical evaluation of the energy, we assume that
Poisson’s ratio is 1/3 and the effective inner-cutoff radius
r0 or r′

0 is one-third of the corresponding Burgers vector.
We should note that the ambiguity of taking the inner-cutoff
radius is equivalent to the ambiguity on the outer-cutoff radius
because these two values appear in the energy equation as
their ratio.

Fig. 1 shows the energy of an edge dislocation for unit
length as a function of the separation distance of the Shockley
partials for three equilibrium dissociation widths ofw = 5b,
10band 20b, and forR= 104b. We note that the energy versus
distance curves forR= 103band 105bare the same as that for

Fig. 1. Change of the strain energy of an edge dislocation with dissociation
into Shockley partial dislocations for three different stacking fault energies
giving equilibrium dissociation widths ofw = 5b, 10b and 20b.

R= 104b but shifted by 0.275Gb2 downwards or upwards,
respectively.Fig. 2shows the results for a mixed dislocation
where the dislocation line and the Burgers vector make 60◦,
andFig. 3the results for a screw dislocation again forw = 5b,
10b and 20b. In these figures, we have assumed that the in-
teraction term in Eq.(3) is valid approximately forx≥ 2b. In
the case of 60◦dislocation and screw dislocation, the change

Fig. 2. Change of the strain energy of a 60◦-dislocation with dissociation
into Shockley partial dislocations for three different stacking fault energies
giving equilibrium dissociation widths ofw = 5b, 10b and 20b.
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