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Abstract

Undissociated, metastable dislocations have been observed in various crystals in addition to stable dissociated dislocations by high-resolutic
transmission electron microscopy. The origin of the metastablity of the undissociated state has been discussed specifically for the dissociatic
into Shockley partial dislocations in fcc or hep lattice. It is shown that the metastability is due either to a high Peierls—Nabarro stress larger
than a few percent of the shear modulus of the partial dislocations and/or to the increase of the total core energy by an increase of the danglir
bonds. The metastablity of undissociated dislocations in zincblende 11I-V compounds is concluded to be due to a contribution of the latter
effect.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction 2. Strain energy consideration

It is well established that dislocations in crystals are  The energy of a perfect dislocation can be represented by
dissociated into partial dislocations bounding a stacking the sum of the elastic energy outside the core radiughere
fault between them when there exists a stable stacking faultthe elastic strain can be described by the linear elasticity the-
in the crystal. The separation between the partials or theory, and the core energy inside the radigsThe value of ¢
dissociation widthw is determined so as to minimize the is (2—3), whereb is the strength of the Burgers vector of the
total energy or by the balance between the repulsive forcedislocation. Assuming elastic isotropy, the elastic energy is
of the partials and the surface tension of the stacking fault. expressed as:

Electron microscopy observation of dislocations has shown, )
however, that in many occasions undissociated dislocationsg, — KGb In 5 (1)
are also present in addition to the dissociated dislocations. 7T Ic

Long constricted segments have been observed in Si by, hereris the outer-cutoff radius which is of the order of the
weak-beam techniqui]. Both dissociated and undissoci- average dislocation spacing in the crys@the shear modu-

ated core structures have been observed by high-resolutions of the crystal and the factérdepends on the dislocation
electron microscopy for lll-V compounds of Gafa 3], characterK = 1 for screw dislocation an = (1—v)~ (v:
InP[4] and GaN[3], for II-VI compounds of CdS, CdSé] Poisson’s ratio) for edge dislocation. The core energy de-

and ZnQ[7]. These observations indicate that undissociated pends on the type of the crystal and cannot be expressed in a

state can be metastable for the stable dissociated dislocationuniversa| way; so that the core energy contribution is usually

In this paper, we discuss the origin of the metastability of incorporated in the total energy by using an effective cutoff
the undissociated state. parameterg (<rc) and thus the total enerds, (subscript u
stands for undissociated dislocation) is written as:

R KGb®> R
* Tel.: +81 4 7124 1501x4305; fax: +81 4 7123 9362. Ey= In —. (2)
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In metallic crystalgg is aboutb/3 [8—11]. In real situations,

the outer-cutoff radius is variable and so we may redrirg

in Eq.(2) a variable parameter. For a typical dislocation den-

sity of 10° cm~2, Rirg ~ 10P. 125
The total energy of a dissociated dislocation is the sum of

the self-energies of the two partial dislocations, the interac-

tion energy between the partial dislocations and the energy

of the stacking fault between the partials. lbgtandb; be

the strength of the partial Burgers vectér,and 6, be the

angle between the dislocation line and the Burgers vector of

partial 1 and partial 2, respectively, adtdbe the stacking

fault energy per unit area amdhe distance between the par-

tial 1 and partial 2. Then, the total energy of the dissociated

dislocationEy (subscript d stands for dissociated dislocation)

is given as:
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1— 1 colo ) Fig. 1. Change of the strain energy of an edge dislocation with dissociation
- Ve UL2 into Shockley partial dislocations for three different stacking fault energies
1-v giving equilibrium dissociation widths ab =5b, 10b and 2®.
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p = cosfy cosbz + 3— sinG1 sinby. ®) R=10% but shifted by 0.27%b? downwards or upwards,
respectivelyFig. 2shows the results for a mixed dislocation
The equilibrium widthw of the dissociated dislocationis ~Where the dislocation line and the Burgers vector make 60

determined by the conditiorEg(x)/dx =0, which gives andFig. 3the results for a screw dislocation againdor 5b,
10b and 2®. In these figures, we have assumed that the in-

W = ﬁGble. () teraction term in Eq(3) is valid approximately fox > 2b. In
2nl” the case of 6Qislocation and screw dislocation, the change

We should note that the interaction energy term in .
is valid only forx larger than the core radiu$ for partials,
where the linear elasticity theory can apply.

Now, we consider the energy change in the dissociation 60° dislocation
process of an undissociated dislocation into partial disloca-
tions. In the following, we treat the most popular dissociation
scheme of Heidenreich—Shockley extended dislocation in fcc
and hcp lattices, i.e., the dissociation into Shockley partial
dislocations, which is represented by the following equation
for the case of fcc crystals.

1 1 1 =
E[1 10]= é[2 11] + stacking fault+ 6[1 21] (5)

Energy (Gb?%)

In the numerical evaluation of the energy, we assume that
Poisson’s ratio is 1/3 and the effective inner-cutoff radius
ro or rg is one-third of the corresponding Burgers vector.
We should note that the ambiguity of taking the inner-cutoff
radiusis equivalent to the ambiguity on the outer-cutoff radius
because these two values appear in the energy equation as
their ratio. 1.00
Fig. 1 shows the energy of an edge dislocation for unit
length as a function of the separation distance of the Shockley
partials for three equilibrium dissociation widths of=5b, Fig. 2. Change of the strain energy of & &fislocation with dissociation
10band 2(, and forR= 10°b. We note that the energy versus  ingo Shockley partial dislocations for three different stacking fault energies
distance curves fdR= 10°b and 1Gb are the same as that for  giving equilibrium dissociation widths af = 5b, 10b and 2.
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