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Size dependence of energy storage and dissipation in a discrete
dislocation plasticity analysis of static friction
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Abstract

The initiation of frictional sliding between a flat-bottomed indenter and a planar single crystal substrate is analyzed using discrete dislocation
plasticity. Plastic deformation is modeled through the motion of edge dislocations in an elastic solid with the lattice resistance to dislocation
motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation incorporated through a set of constitutive
rules. The adhesion between the indenter and the substrate is modeled using a shear traction versus sliding displacement cohesive relation.
The evolution of the energy storage and dissipation are calculated as a function of contact size.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Frictional sliding is a complex process involving contact
with multiple asperities, typically of a range of sizes. One
issue is the magnitude of the friction force necessary to slide
across a single asperity,Ffr . Bowden and Tabor[1] developed
a theory in whichFfr is taken to be proportional to the area
of the contactAc via

Ffr = τfrAc. (1)

In this “plastic junction” theory of Bowden and Tabor[1] it is
implicitly assumed that the friction stressτfr is independent
of the contact area. In[2], the initiation of sliding between
a flat-bottomed indenter and a planar metallic single crystal
substrate was analyzed using discrete dislocation plasticity.
A range of contact sizes was found for whichτfr is size de-
pendent. It was also found that the dislocation structure that
accompanies sliding varied with the contact size.
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A related issue of interest is the extent to which the plas-
tic dissipation depends on contact size. The work expended
in sliding is partitioned into the work required to overcome
adhesion, the energy dissipated in plastic flow and the energy
stored in the dislocation structure that develops. Here, the
evolution of the energy partitioning is analyzed for three of
the contact sizes in[2]. Each contact size considered exhibits
qualitatively different behavior.

2. Method of analysis

Plane strain discrete dislocation analyses of the initiation
of sliding between a perfectly flat indenter and a planar single
crystal substrate are carried out as sketched inFig. 1. For
computational efficiency, the edge dislocations are confined
to a region near the indenter as sketched inFig. 1 and the
computations are terminated before any dislocations reach
the boundary of this region.

The dislocations are modeled as line singularities in an
isotropic elastic solid. Consistent with the plane strain con-
dition, only edge dislocations are considered, all having the
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Fig. 1. Sketch of the boundary value problem considered.

same Burgers vector. Initially, the material is free of mobile
dislocations and dislocations can be generated from randomly
distributed discrete sources.

A cohesive surface is used to model the adhesion between
the two contacting surfaces. In[2], two forms of the cohesive
relation were considered. Here, attention is confined to the
“non-softening” relation in[2] given by:

Tt =
{

−τmax
∆t
δt

if |∆t| < δt;

−τmaxsign(∆t) otherwise,
(2)

where∆t = u1(x1, 0) is the tangential displacement jump
across the cohesive surface,Tt the shear traction andτmax
andδt are prescribed constants.

A displacement,U, is imposed in thex1 direction to sim-
ulate the relative sliding of the two contacting surfaces and
attention is focused on the initiation of sliding. The computa-
tion of the deformation history is carried out in an incremental
manner withU increased monotonically as described in[2]
with superposition,[4], used to satisfy the boundary condi-
tions. Dislocation rules are given for: (i) dislocation glide;
(ii) annihilation; (iii) nucleation; and (iv) obstacle pinning.

From conservation of energy, the work done by the loading
is

W = a

∫ U

0
τ dU = Φ + Wplas+ Wcohes (3)

whereτ is the average contact shear stress,Φ the elastic
energy stored in the material,Wplas is the plastic dissipation
andWcohesis the energy expended in the cohesive surface.

Recently, Benzerga et al.[5] have used discrete dislocation
plasticity analyses to calculate the evolution of the stored
energy of cold work and plastic dissipation and corresponding
analyses are carried out here. The elastic energy stored in the
material is obtained via

Φ =
∫

A

φe dA, φe = 1

2
σijε

∗
ij (4)

whereε∗
ij is the elastic strain. Also, in calculatingΦ a region

of radius 4b is excluded around each dislocation core. Nu-
merical checks showed that decreasing the core radius to 2b

had a negligible effect onΦ, although the order of integration
required to calculateΦ accurately then had to be increased.

Because in discrete dislocation plasticity, the plastic part
of the deformation is associated with the evolution of dis-
placement jumps across the slip planes, the displacement
gradient field, needed to compute strains, involves delta func-
tions. Here, an approximation is used to calculate the plastic
dissipation. A smooth strain rate field,ε̇d

ij, is introduced in
each finite element that is computed by differentiating the
total displacement rate field ˙ui in that element using the fi-
nite element shape functions. Then, at each point within an
element, the plastic dissipation,Wplas, is the stress working
throughε̇d

ij minus the energy stored. The total plastic dissi-
pation is obtained by integrating over all elements so that

Wplas =
∫

A

wplasdA, wplas =
∫ t

0
σijε̇

d
ijdt − 1

2
σijε

∗
ij (5)

The cohesive energy,Wcohesat timet, is given by

Wcohes=
∫

Scoh

wcohesdS, (6)

wherewcohes is obtained as
∫

Ttd∆t whereTt and ∆t are
related by Eq.(2).

3. Results

The single crystal substrate is taken to have three slip sys-
tems: oriented atθ = ±60◦ andθ = 0◦ with respect to the
contact surfacex2 = 0. Each slip system consists of equally
placed slip planes 100b apart in the process window, where
b = 0.25 nm is the magnitude of the Burgers vector. A density
of sources,ρsrc = 72 �m2, distributed on each slip plane nu-
cleate a dipole when the Peach-Koehler force exceeds a criti-
cal value ofτnucbduring a period of timetnuc = 10 ns;τnuchas
a Gaussian distribution with mean̄τnuc = 50 MPa and stan-
dard deviation 10 MPa. There is also a density of obstacles,
ρobs = 124 �m2, with obstacle strengthτobs = 150 MPa.
The dislocation velocity is taken to be proportional to the
Peach-Koehler force with drag coefficientB = 10−4 Pa s and
the annihilation distance is 6b. The crystal elasticity is taken
to be isotropic withE = 70 GPa andν = 0.33. The cohesive
properties are given byτmax = 300 MPa andδt = 0.5 nm.

The effect of the contact sizea on the friction stress,τfr ,
was studied in[2]. It was found that theτfr versusa curve
exhibits two plateaus: for large contacts (a ≥ 10 �m), τfr is
of the order of the yield strength and essentially independent
of a, while for small contacts (a < 0.5 �m), τfr = τmax. In
the transition regime,τfr ∝ a−1/2 as found on a different basis
in [3].

The evolution of energy storage and dissipation is con-
sidered for three contact sizes; 10µm, a contact size on the
lower plateau; 1�m, a transition contact size; and 0.1 �m,
a contact size on the upper plateau (τfr = τmax). On the lower
plateau, plastic deformation is highly localized directly be-
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