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Anderson localization problem: An exact solution
for 2-D anisotropic systems
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Abstract

Our previous results [V.N. Kuzovkov, W. von Niessen, V. Kashcheyevs, O. Hein, J. Phys. Condens. Matter 14 (2002)

13777] dealing with the analytical solution of the two-dimensional (2-D) Anderson localization problem due to disorder

is generalized for anisotropic systems (two different hopping matrix elements in transverse directions). We discuss

the mathematical nature of the metal–insulator phase transition which occurs in the 2-D case, in contrast to the 1-D case,

where such a phase transition does not occur. In anisotropic systems two localization lengths arise instead of only

one length.
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1. Introduction

Anderson localization [1] remains one of the main problems in the physics of disordered systems (see e.g.,
the review articles [2–4]). In the series of our previous papers [5–7] we presented an exact analytic solution to
this problem. By the exact solution we mean the calculation of the phase diagram for the metal–insulator
system. We have been able to solve the two dimensional (2-D) problem [5]. We have shown then that the phase
of delocalized states exists for a non-interacting electron system. The main aim of the paper [6] was the
generalization of the results to the case of higher dimensional spaces (N-D). In Ref. [7] we discussed the
mathematical details of the new analytical approach for calculating the phase diagram. An exact solution is
only possible for the conventional Anderson model: the tight-binding approximation with diagonal disorder,
where on-site potentials are independently and identically distributed.

It is well known that the exact results in the field of phase transitions (the metal–insulator transition is a
particular case of a phase transition) are exceedingly rare [8,9]. This is why any extension of the applicability
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range of analytical methods in this field is of great interest. In this paper we extend our approach [5–7,10] to
anisotropic media [11–14], but else remaining in the framework of a conventional Anderson model.

Incorporation of an anisotropy into the tight-binding approximation with diagonal disorder is also
methodologically valuable. Before the exact solution was obtained for D41 [5–7], analytical methods
concentrated on the D ¼ 1 case [15,16]. However, the specific topology of 1-D systems does not permit the
extension of the results to higher dimensions. This is true in particular for the Ising model, where an exact
analytical solution for the 1-D case has nothing to do with the 2-D solution obtained by Onsager [8,9]. As it is
well known for the Anderson localization problem, all states in the 1-D system are localized (i.e., there is no
metal–insulator transition). This is a particular result of a general theory [9] that no phase transitions are
possible in 1-D systems with short-range interactions. In fact, phase transitions (e.g., in the Ising model [8,9] or
the Anderson localization problem [5]) are observed only starting with D ¼ 2.

It should be realized that the approximate methods are also of a limited use here. In particular, traditional
perturbation theory works perfectly in the 1-D case [15], which is well demonstrated by the analysis of the
exact solution in Refs. [5,17]. Random potentials can be treated in the 1-D Anderson localization problem as a
small parameter, which is used in a series expansions of physical quantities. However, this approach fails [9]
for systems with phase transitions in D41, since physical quantities here are no longer described by analytical
functions and series expansions. The same is valid for the Lyapunov exponent g (which is the inverse of the
localization length x in the Anderson problem [5]).

Of particular interest is the understanding of the mathematical nature of the phase transition: how does the
analytical character of the exact solution for the 1-D problem change to a non-analytical character of the exact
solution for the 2-D case? For the discrete spatial dimensions (1-D or 2-D) a simple comparison of the two
relevant solutions does not help us. However, a ‘‘continuous’’ treatment of the spatial dimension for
anisotropic systems, performed in this paper, provides much more insight. We have put the word continuous
within quotation marks because we have in the present case of anisotropic systems an interesting possibility of
a transition from a 2-D system to a 1-D system, by considering the limit k! 0 for parameter of anisotropy k.

The paper is organized as follows. In Section 2 we discuss the basic equations for the isotropic problem [5],
which are generalized there for the anisotropic case. Section 3 presents the main results for the anisotropic
problem. We demonstrate how the study of the limiting case of a strong anisotropy permits us to establish a
relation between 1-D and 2-D cases.

2. Recursion relation and the filter function

2.1. Isotropic system

Let us start with the Schrödinger equation for the isotropic system (the lattice constant and the hopping
matrix element are set equal to unity)

cnþ1;m þ cn�1;m þ cn;mþ1 þ cn;m�1 ¼ ðE � �n;mÞcn;m. (1)

The on-site potentials �n;m are independently and identically distributed with existing first two moments,
h�n;mi ¼ 0 and h�2n;mi ¼ s2.

Eq. (1) can be written as the recursion

cnþ1;m ¼ ��n;mcn;m � cn�1;m þLcn;m, (2)

where the operator L acts on the index m and is defined by the relation

Lcn;m � Ecn;m �
X

m0¼�1

cn;mþm0 . (3)

The standard initial (boundary) conditions are c0;m ¼ 0 and c1;m ¼ am, respectively.
The existence of some fundamental 1-D numerical series hn ðn ¼ 0; 1; . . . ;1Þ, the so-called system function

or filter, was proved rigorously in Refs. [5–7]. A study of the asymptotic behaviour of this series allows to
define uniquely the phase diagram of the system. Namely, the series hn is bounded

jhnjo1, (4)
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