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A note on scaled variance ratio estimation of the Hurst exponent
with application to agricultural commodity prices
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Abstract

The measure of long-term memory is important for the study of economic and financial time series. This paper estimates

the Hurst exponent from a Scaled Variance Ratio model for 17 commodity price series under the efficient market null

H0:H ¼ 0.5. The distribution about the estimates of H are obtained from 90%, 95% and 99% confidence intervals

generated from 20,000 Monte Carlo replications of a geometric Brownian motion. The results show that the scaled

variance ratio provides a very good and stable estimate of the Hurst exponent, but the estimates can be quite different from

the measure obtained from rescaled range or R–S analysis. In general commodity prices are consistent with the underlying

assumption of a geometric Brownian motion.
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1. Introduction

This paper is concerned with the sampling space of a geometric Brownian motion (gBm)

dx ¼ axdtþ sxdZ, (1)

where dZ ¼ �
ffiffi
t
p

is a Gauss–Wiener process, and x is a time-independent random variable with instantaneous
rate of change, a, and standard deviation s. This process is fundamental to the concept of financial economics
and a variety of studies have attempted to measure whether Eq. (1) holds, or whether there is persistence or
memory in markets (see for example Refs. [1–19]). We treat (1) as null over the more general set of fractional
Brownian motion (fBm) described by

dx ¼ axdtþ sxdZH , (2)

where dZH characterizes a fBm with Hurst parameter HA(0,1). Under the null, H ¼ 0.5 transforms (2) to (1).
A fBm is a time series sequence that is non-stationary, self affine , with covariance over a time step or duration
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k ¼ Dt (see [20–22]) equal to

E xðtÞ � xð0Þ½ � xðtþ DtÞ � xðtÞ½ �ð Þ ¼
1

2
s2 tþ Dt½ �

2H
� t2H � Dt2H

� �
, (3)

and variance over Dt is equal to

E xðtþ DtÞ � xðtÞ½ �
2
¼ s2ðDtÞ2H . (4)

By setting H ¼ 0.5 the right-hand side of (3) collapses to zero and the independent increments
and stationarity assumptions are satisfied for a gBm, and (4) reduces to the standard gBm feature that
the variance is linear in time. As H approaches zero the limit of covariance approaches �0.5s2o0,
and variance falls. As H-1.0, covariance approaches s2(tDt)40 and variance increases. For Ho0.5
the covariance term decreases with increasing time steps. Hence the term ‘short memory’. In contrast, the
term ‘long memory’ comes from the results that covariance increases with increased time steps when
H40.5. However, this is not to the exclusion of the possibility that Ho0.5 can also be a long memory
process [13]. The respective Wiener processes in (1) and (2) therefore possess markedly different
properties.

To place the significance of this note in the context of (financial) economics it is worthwhile to pursue the
distinction between a stochastic process that is self-similar with that which is self-affine. There are other
motivations, one of course being the ability or inability to arbitrage markets and confound the efficient market
hypothesis, but this motivation is also linked to affine structure. The Wiener process dZ is self-similar in time,
whereas dZH is self-affine. While conceptually similar, self-similarity and self-affinity differ in the following
way (see Ref. [23] or [24]): Suppose that an initial sequence or set {X1, X2, X3} can be transformed to the set
{r1X1, r2X2, r3X3}, then the transformation is said to be self-similar if r1 ¼ r2 ¼ r3 and self-affine otherwise. If
the variance obeys the power law VAR ¼ s2(Dt)2H, (i.e. Eq. (4)) it is self-affine over the entire range of H, but
is self-similar only for H ¼ 0.5. Therefore, and generally speaking, self-similarity is a special case of self-
affinity. If indeed r1 ¼ r2 ¼ r3 there is nothing in scale that would provide an advantage to X3 over X1, but if
the scaling were self affine on the order (for example) r1or2or3 then some advantage could be had as a result
of non linearity in the scaling.

Eq. (4) is central to this analysis. Dividing the left-hand side by the 1-period variance gives the variance ratio

E xðtþ DtÞ � xðtÞ½ �
2

s2
¼ ðDtÞ2H , (5)

which establishes a power rule that can be used to estimate H from observed variance, and in a manner that is
quite distinct, albeit consistent with, R/S analyses [25–27] and other methods including Scaled Window
Variance [28] and surrogate methods (see Refs. [29,30]; see Ref. [31] for a critique). We refer to our measure as
the Scaled Variance Ratio, but view it within the class of Scaled Window Variance models. In these measures
the numerator discretizes the sampling space into subseries of uniform length, computes variance at each
length and compares (in general) the discretized variances to the variance of the original sample. If the
relationship between the scaled variance and the unscaled variance is linear in Dt then H ¼ 0.5. While the
principle remains the same across the various methods of calculating H, the approaches differ in how the data
is scaled.

Use of the variance ratio as an estimator for determining a random walk has been well developed in the
literature (e.g. [32]) and need not be repeated here. However, the relationship between the variance ratio and
the spectral density in the context of long-term memory (see Refs. [33–35]), although noted in Ref. [32], has
not been to our knowledge been fully exploited to provide estimates of H in the Brownian motion context of
Refs. [25–27,36]. In other words the financial economics literature that uses the variance ratio selects a single
level of aggregation, k, and then decides whether the ratio for a given k is statistically different from unity.
Compare this to the measure in Eq. (5) that computes the variance ratio for a range of continuous k-steps and
then applies the power law defined in H (hence the use of the term Scaled Variance Ratio). The key result is
that if the time series evolves as a gBm and satisfies certain stationarity conditions, the variance is linear in
time as depicted in Eq. (4). In other words, the variance of price changes over a 2-day period (k ¼ 2) will be
twice the variance of the change in 1 day or the variance over 20 days (k ¼ 20) will be 20 times the variance
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