
Materials Science and Engineering A 393 (2005) 133–139

Elastic properties of ceramic–metal particulate composites
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Abstract

In the present study, the experimental data on the elastic properties of several ceramic–metal systems, Al2O3–NiAl, SiC–Al, WC–Co and
glass–W, are compiled and compared with several theoretical predictions. These theoretical predictions offer upper and lower bounds on the
elastic constants. The elastic moduli of the ceramic–metal composites fall well within the Voigt–Reuss bounds and Hashin–Shtrikman (H–S)
bounds. Though most the Poisson’s ratio of ceramic–metal composites falls within the modified H–S bounds, the values of the composites
with low second-phase concentration deviate from model predictions. The deviation shows strong dependence on the interconnectivity of
each phase in the composites.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Composites; Elastic modulus; Poisson’s ratio

1. Introduction

The elastic properties of monolithic materials (ceramics
or metals) depend strongly on their bonding characteristics
[1]. For example, the elastic modulus of monolithic ceramics
reflects their cation-oxygen bonding length and strength un-
der tension[2]. The bending strength of inter-atomic bonds
determines the magnitude of shear modulus. Among these
elastic constants, Koester and Franz suggested that the Pois-
son’s ratio provided more information about the character of
the bonding forces[3]. Furthermore, the elastic constants are
sensitive to the composition change. The presence of solute
can alter the bonding characteristics as well as the elastic
constants of materials[2].

The bonding characteristics of ceramics are different from
those of metal. The addition of ceramic into metal or vice
versa introduces heterogeneous interfaces. To be demon-
strated later, the elastic properties of the two-phase materials
often deviate from the prediction made by using the rule of
mixtures. It may be related to the presence of heterogeneous
interface.
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Though the properties of ceramics and metals are differ-
ent, the combination of two materials to form composite ex-
hibits many potential applications. For example, the hardness
of tungsten carbide (WC) is very high; nevertheless, the sin-
tering between WC particles is not possible below 1500◦C.
Metallic cobalt can bond WC particles strongly together at
a relatively low temperature[4]. The WC–Co composite can
thus be applied as cutting tool. The addition of Al into SiC can
result in improved thermal stability[5]. The addition of NiAl
improves the toughness of Al2O3 [6]; the presence of ZrO2
particles enhances the high temperature strength of NiAl[7].

The knowledge about the elastic properties of two-phase
systems is essential for designing new composites and func-
tionally graded materials[8–13]. With the knowledge of the
elastic modulus, other properties such as hardness and creep
resistance can then be estimated[14,15]. There are many
theoretical models available to predict the elastic constants
of two-phase materials[16–38]. Some models contain one or
two adjustable variables that have to be determined experi-
mentally[19–23,25–38]. Some models need only the prop-
erties of the two constituents to predict the elastic constants
[8,16–18,24]. Among these models, several models can offer
fixed values for the elastic properties of two-phase materials
[8,19–21]. Several models propose upper and lower bounds
instead[8,16,17,19–21,32–36]. All these models claim that
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they can match the experimental data well. However, the pre-
existed experimental data cover only part of the composition
range for a certain composite. A recent study reported the
elastic constants of Al2O3-NiAl system for whole range of
composition[37], which makes comparison between experi-
mental data and theoretical predictions possible. Apart from
the data of Al2O3–NiAl system, the available data for other
ceramic–metal composites, SiC–Al, WC–Co and glass–W,
are also compared in the present study to verify the model
predictions.

2. Theoretical models

Most theoretical models are made under the assumptions
of perfect bonding at the interface, strain compatible and neg-
ligible elastic interaction between particles[16–38]. These
models further employed simplified geometries, as shown
in Fig. 1, to derive their mathematical equations. In the
present study, experimental data are compared with the the-

Fig. 1. The unit cell proposed in (a) iso-strain (Voigt) state and (b) iso-stress
(Reuss) state. The geometrical models employed by (c) Hashin–Shtrikman
(H–S) and (d) Ravichandran models. The arrows indicate the direction of
the external load.

oretical predictions. A comprehensive data collection on the
ceramic–metal composites has been carried out. These ex-
perimental data vary within a range instead of a specific
point. The model predictions that can provide upper and
lower bounds to cover the experimental data seem more plau-
sible. Therefore, the following three models are chosen: (1)
Voigt–Reuss, (2) Hashin–Shtrikman (H–S) and (3) Ravichan-
dran models.

2.1. Voigt–Reuss bounds

Fig. 1(a) shows the case that the strain of the two phases in
the composite under an external load is the same. The loading
direction is parallel to the interface. The elastic modulus of
the composite,Ec, as proposed by Voigt[16] is

Eu
c = EmVm + EpVp (1)

withVm +Vp = 1,Vm andVp are the volume fraction of matrix
and particle, respectively. Eq.(1) follows the rule of mixtures.
When the composite is under an iso-stress state as proposed
by Reuss[17], as shown inFig. 1(b), the elastic modulus is
expressed as

El
c = EmEp

EmVp + EpVm
(2)

The superscripts u and l denote upper and lower bounds,
respectively. As pointed out by Hill[22], neither iso-strain nor
iso-stress assumption is realistic. The tractions at interface are
not at equilibrium under the Voigt condition; the interface
could not remain bonded under the Reuss condition. Though
the equality in Eq.(1) is true only when the Poisson’s ratios of
the two phases are the same; the values predicted by Eqs.(1)
and(2) are widely treated as the upper and lower bounds of
the elastic modulus of any two-phase materials, respectively
[5]. The Voigt–Reuss bounds are thus used in the present
study to compare the experimental data.

Each value of elastic modulus (E), shear modulus (G),
bulk modulus (K) and Poisson’s ratio (ν) can be calculated
by knowing any two elastic constants. However, it should be
noted that it is not suitable to calculate the Poisson’s ratio
under the iso-strain and iso-stress assumptions.

2.2. Hashin–Shtrikman (H–S) bounds

Hashin and Shtrikman treated the two-phase system com-
posing of one randomly distributed particulate phase and
one continuous matrix phase,Fig. 1(c). The model provides
bounds for the elastic constants of a two-phase material with
a random isotropic distribution of phases from the properties
and volume fraction of each phase[19–21,36]. The “mini-
mum energy” principle was employed to show the bounds on
the bulk modulus and shear modulus as

Kl
C = Km + Vp

(1/Kp − Km) + (3Vm/3Km + 4Gm)
(3)
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