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Abstract

Scaling analysis of the magnitude series (volatile series) has been proposed recently to identify possible non-linear/multifractal

signatures in the given data [Y. Ashkenazy, et al. Phys. Rev. Lett. 86 (2001) 1900; Y. Ashkenazy, et al. Physica A 323 (2003) 19;

T. Kalisky, Y. Ashkenazy, S. Havlin. Phys. Rev. E 72 (2005) 011913]. In this article, correlations of volatile series generated

from stationary first-order linear feedback process with Gaussian and non-Gaussian innovations are investigated. While volatile

correlations corresponding to Gaussian innovations exhibited uncorrelated behavior across all time scales, those of non-

Gaussian innovations showed significant deviation from uncorrelated behavior even at large time scales. The results presented

raise the intriguing question whether non-Gaussian innovations can be sufficient to realize long-range volatile correlations.
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1. Introduction

Detrended fluctuation analysis (DFA) and its extensions [1–6] have been used widely to determine the
nature of correlations in synthetic and experimental data obtained from a wide range of complex systems.
Recently [1–3], analysis of the magnitude series of the given empirical sample has been used to gain further
insight into the underlying dynamics [5–10]. More importantly, long-range correlation in the magnitude series
was found to be indicative of non-linear and possibly multifractal signatures in the given data [1–3, 5–10].
Several models have also been proposed recently to generate volatile correlations under certain constraints
[11]. In the present study, we investigate the impact of Gaussian and non-Gaussian innovations on the scaling
of magnitude series generated from stationary first-order linear feedback processes.

2. Methods

A first-order linear feedback process represents the most elementary of the stochastic processes, and is given
by the expression

xn ¼ yxn�1 þ 2n, (1)
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where 2n represents an identical and independently distributed (i.i.d.) process (white noise) sampled from a
given distribution, also known as innovations. The xth

n sample is related to the xth
n�1 sample through the process

parameter y. For the same reason, processes such as Eq. (1) are termed finite memory or Markov processes.
Each xn is a weighted sum or a linear combination of innovations 2n. Therefore, Eq. (1) is a linearly correlated

noise whose distribution is governed by 2n. It can be shown analytically that the above process (1) is stationary
for jyjo1 with associated auto-correlation function rðkÞ ¼ yk (see Appendix A). In the present study, we
considered process parameters y ¼ 0.95 and y ¼ 0.65. Unlike the latter, y ¼ 0.95 is close to the non-stationary
regime y ¼ 1, resulting in slow decay of the auto-correlation function. We investigate the scaling behavior of
Eq. (1) with Gaussian as well as non-Gaussian innovations 2n sampled from five different distributions,
namely,

NORM: Zero-mean unit variance innovations2n, sampled from a Gaussian-distributed white noise (g) with
a probability density function f ðgÞ ¼ 1ffiffiffiffi

2p
p e�x2=2; x 2 ð�1;1Þ.

SQNORM: Zero-mean unit variance innovations 2n, sampled from a squared transform of a Gaussian-
distributed white noise, i.e., g1 ¼ g2.
EXPNORM: Zero-mean unit variance innovations 2n, sampled from an exponential transform of a
Gaussian-distributed white noise, i.e., g2 ¼ eg.
UNI: Zero-mean unit variance innovations 2n, sampled from a uniformly distributed white noise (u) with a
probability density function f ðuÞ ¼ 1=ðb� aÞ; u 2 ða; bÞ.
LOGUNI: Zero-mean unit variance innovations 2n, sampled from a negative log transform of a uniformly
distributed white noise, i.e., u1 ¼ �logðuÞ.

The above abbreviations shall be used in the subsequent sections. It can be shown analytically that second-
order moments are sufficient to completely describe first-order linear feedback processes with Gaussian
innovations. However, this is not true in the case of non-Gaussian innovations, where higher-order statistics
are required to sufficiently describe the process. Two popular statistics used in the literature to reflect the
deviation from Gaussianity are skewness ðcÞ and kurtosis ðkÞ. Skewness and kurtosis of the innovations
(NORM, EXPNORM, SQNORM, UNI and LOGUNI) are shown in Figs. 1a–e. Those of their
corresponding linear feedback processes with parameters (y ¼ 0.95, N ¼ 216) are shown in Figs. 1f–j,
respectively. While NORM and UNI are symmetric distributions ðc ¼ 0Þ, SQNORM, EXPNORM and
LOGUNI are asymmetric ðca0Þ. Kurtosis of UNI ðk ¼ 1:8Þ and NORM ðk ¼ 3Þ are dissimilar (Figs. 1a and
d); however, those of their corresponding linear feedback processes are similar ðk ¼ 3Þ (Figs. 1f and i). As shall
be shown later, volatile correlations of Eq. (1) with UNI showed minimal discrepancy from those with
NORM.

3. Results

Classical power spectral analysis is used widely to investigate correlations in stationary linear processes such
as Eq. (1). The power spectrum of a stationary process is related to its auto-correlation function by the
Wiener–Khinchin theorem. As noted earlier (Appendix A), the expression of the auto-correlation for the first-
order linear feedback process xn (1) is governed solely by the process parameter y and is immune to the
distribution of the innovations 2n. Thus, it might not be surprising to note that first-order linear feedback
processes with Gaussian (NORM) and non-Gaussian (SQNORM, EXPNORM, UNI and LOGUNI)
innovations revealed similar spectral signatures (Fig. 2a), also reflected in the scaling of their fluctuation
function F(s) with time scale s (Fig. 3a), obtained using DFA with fourth-order polynomial detrending. In the
literature, volatility series of the given data has been generated using continuous and discontinuous, static,
memoryless non-linear transforms [3]. The power spectrum of the magnitude series generated from mean
subtracted x (1) with transforms xj j; x2; xn � xn�1j j, and innovations NORM, SQNORM, EXPNORM, UNI
and LOGUNI is shown in Fig. 2. As expected, the qualitative behavior of the power spectrum, hence the
correlation, showed a marked change across the three different transforms [12]. More importantly, the
transforms xj j; x2 do not exhibit considerable variation across the various innovations (Figs. 2b and c), also
reflected in the scaling of their fluctuation function F(s) with respect to the time scale s (Figs. 3b and c),
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