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Abstract

We introduce the principle of the plane-wave transfer-matrix method, a theoretical tool that we have recently developed systematically to

solve optical problems of photonic crystals (PCs). In this formulation, the electromagnetic fields are expanded into superposition of plane

waves associated with the crystal lattice, which facilitates access to many advanced Fourier analysis techniques. We briefly discuss the

standard application of the TMM to solution of transmission, reflection and absorption spectra for a finite PC slab and photonic band

structures for an infinite PC. Then we push the formulation further to handle wave propagation in semi-infinite PC crystal structures.

The three-dimensional wood-pile PC is taken as an example to show the power of the theory.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Photonic crystals (PCs) are artificial materials made from

periodic arrays of dielectric or metallic building blocks. The

existence of photonic band gaps (PBGs) has brought about

an unprecedented power to control and manipulate the

propagation of electromagnetic (EM) waves [1–3]. The

most promising and fundamental aspect of PCs is that they

can serve as the physical platform of future ultra-small

photonic integrated circuits, which involve a wide variety of

functional elements and devices, such as waveguides,

waveguide bends, cavities, beam splitters, modulators,

optical switches, channel-drop filters, wave division multi-

plexers, and so on [4–8].

Many theoretical and numerical tools have been

developed to understand and design PC structures, elements,

and devices. Among them the popular ones are the plane-

wave expansion method (PWEM) [9–11], finite-difference

time-domain (FDTD) technique [12], and real-space

transfer-matrix method [13]. These methods can study

different aspects of the optical properties of PC structures.

For instance, the PWEM can conveniently examine the

photonic band diagram of an infinite PC, while the FDTD

technique is the best weapon to govern the dynamics of

wave transport in PC structures. Recently, we have

systematically developed a plane-wave transfer-matrix

method (PWTMM) and explored its power in application

to a wide variety of problems involving PC structures,

functional elements, and optical devices [14–20].

The PWTMM has several advantages. First, it can solve

the standard problem of the photonic band structures [14]

and the scattering (transmission, reflection, and absorption)

spectrum [15,16]. As a frequency-domain technique, the

PWTMM allows for accurate spectrum solution. When

combined with a supercell technique, the approach can also

handle PC waveguides and cavities [17–20]. Second, is

exhibits excellent numerical convergency and accuracy due

to the incorporation of many advanced Fourier-analysis

skills [14,18,21,22], and the numerical burden is logarith-

matically proportional to the sample length of a finite PC

structure. Third, the approach can also handle metallic

materials and PC structures that exhibit loss of power to the

background [15,18]. Finally and most importantly, this

approach can successfully handle wave propagation in

semi-infinite PC structures, and efficiently explore the

intrinsic optical properties of a variety of functional

elements embedded in the PC background [17–20]. Armed

with these powers, the PWTMM can deal with a large range
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of optical problems involving PC structures and devices. In

the following sections we will briefly introduce the main

principles of the PWTMM and its application to several

typical problems. We will take the three-dimensional wood-

pile PC structure as an example to demonstrate the

approach.

2. Principles of PWTMM

Like all other optical problems, the PMTMM also starts

from Maxwell’s equations. For a general PC structure

Maxwell’s equations read

V!EðrÞ Z ik0mðrÞHðrÞ;

V!HðrÞ ZKik03ðrÞEðrÞ:
(2.1)

Here k0Zu/c is the wave number, c is the light speed in

vacuum, and u is the angular frequency of the EM wave. In

usual photonic structures, the composite materials are

nonmagnetic, and m(r)Z1. But generally one can consider

a general case where both 3(r) and m(r) are spatially

periodic functions. For anisotropic composite materials, 3(r)

and m(r) are even second-rank tensors.

Assume that the EM wave propagates along the z-axis

direction. In the PWTMM, only the tangential components

of EM fields, Ex, Ey, Hx, and Hy are considered. They satisfy

four coupled differential equations that can be derived from

Eq. (2.1) [14]. The PC can be looked upon as a stack of

grating layers along the wave propagation direction. The

grating is characterized by the primitive lattice R(with basic

vectors a1 and a2) and reciprocal lattice G (with basic

vectors b1 and b2).

The EM fields at an arbitrary point r can be written into

the superposition of Bragg waves (or plane waves).

EðrÞ Z
X

ij

EijðzÞe
iðkij;xxCkij;yyÞ;

HðrÞ Z
X

ij

HijðzÞe
iðkij;xxCkij;yyÞ;

(2.2)

where the Bragg wave vector kij Z ðkij; x; kij; yÞZ
ðk0x; k0yÞC ib1C jb2Z ðk0x; k0yÞCGij, with (k0x, k0y) being

the incident wave vector. Eij and Hij are unknown expansion

coefficients of the electric and magnetic fields. The

permittivity and permeability functions are also expanded

into plane-wave functions:

3ðrÞ Z
X

ij

3ijðzÞe
iGij$r; 3K1ðrÞ Z

X
ij

3K1
ij ðzÞe

iGij$r;

mðrÞ Z
X

ij

mijðzÞe
iGij$r; mK1ðrÞ Z

X
ij

mK1
ij ðzÞe

iGij$r:

(2.3)

In the framework of the above basic mathematical

formalisms, the overall working principles of the PWTMM

can be well described by Fig. 1. First, as depicted in

Fig. 1(a), the unit cell along the z-axis is divided into a

number of thin slices, each of which is approximated as

a lamellar grating with 3ij(z) etc. in Eq. (2.3) all being

constants within the slice. Each thin slice is then surrounded

by two infinitely thin air films that are artificially inserted in

the two hand sides. The main advantage of this procedure is

great simplicity and clarity: The solution to all different

slices can be placed into a uniform free-space plane-wave

space. Second, construct the transfer matrix for each slice,

as depicted in Fig. 1(b). This requires the knowledge of EM

fields in the two air films as well as within the slice. The

field within the periodic slice can be solved by inserting the

plane-wave expansion forms Eqs. (2.2) and (2.3) into

Maxwell’s equations Eq. (2.1), while the field in the air

films has simple analytical solutions that are completely

characterized by the plane-wave expansion coefficients

[14]. The transfer matrix is defined to connect the column

vectors consisting of plane wave coefficients in the right-

hand air films ðUC
i ;U

K
i Þ to those in the left-hand air films

ðUC
iK1;U

K
iK1Þ. We can write down

UC
i

UK
i

 !
Z ti

UC
iK1

UK
iK1

 !
;

UC
i

UK
iK1

 !
Z si

UC
iK1

UK
i

 !
: (2.4)

ti and si are called T-matrix and S-matrix for the ith slice,

respectively. General speaking, the T-matrix connects the

fields at the right side of a slice to the fields at the left side,

while the S-matrix connects the outgoing (scattering) fields

to the ingoing (incident) fields for the slice.

With all the individual transfer matrices at hand, we can

go to the third step as depicted in Fig. 1(c) to construct the

unit-cell transfer matrix. This can be accomplished by using

the recursion algorithms. The unit-cell T-matrix is simply

given by T Z tntnK1.ti.t2t1. This formulation is numeri-

cally unstable for thick samples because the exponentially

growing and decaying terms involved in the slice T-matrix

will accumulate simultaneously. In contrast, the S-matrix

formulation is numerically stable as the formula only deals

with exponentially decaying terms. The unit-cell S-matrix

should be constructed as follows. Suppose the overall S

matrix for the first nK1 slices and the S matrix for slice n

have been calculated to be Sn-1 and sn, respectively,
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Fig. 1. Schematic picture showing how the PWTMM is applied to a

photonic crystal.
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