Journal of Alloys and Compounds 394 (2005) 211–214 www.elsevier.com/locate/jallcom ## Solid-state phase equilibria in the Fe–Pt–Pr ternary system at 1173 K Ren Jing*, Gu Zhengfei, Cheng Gang, Zhou Huaiying Department for Information Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China Received 19 October 2004; accepted 29 October 2004 Available online 10 December 2004 #### Abstract The solid-state phase equilibria in the Fe–Pt–Pr ternary system at 1173 K (Pr \leq 70%) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) techniques. The 1173 K isothermal section consists of 13 single-phase regions, 22 two-phase regions and 10 three-phase regions. At 1173 K, we have observed that the maximum solid solubility of Pt in α -Fe is below 1.5 at.% and the solid solution region of Pt in γ -Fe is from 2 to 35 at.%; the maximum solid solubility of Fe in Pt is 18 at.%. The maximum solubility of Fe in PrPt₅, PrPt₃, PrPt₂, Pr₃Pt₄, PrPt, Pr₃Pt₂ and Pr₇Pt₃ is below 1 at.%. The maximum solubility of Pr in α -(Fe, Pt), γ -(Fe, Pt), FePt, FePt₃ and (Pt, Fe) (the solid solution of Fe in Pt) is 6, 2, 4, 4.5 and 1.5 at.%, respectively. In this work, it is found that the phase Pr₃Pt₄ does not exist in the ternary system. The binary compounds Fe₇Pr and Fe₂Pr and any new ternary compounds were not observed. © 2004 Elsevier B.V. All rights reserved. Keywords: Transition metal compounds; Rare-earth compounds; Phase diagram; Crystal structure; X-ray diffraction #### 1. Introduction The Fe-Pt, Pr-Pt, Fe-Pr binary systems bounding the Fe-Pt-Pr ternary systems have been widely investigated. It has been reported that three binary compounds, Fe₃Pt (AuCu₃ structure type), FePt (AuCu₃ structure type) and FePt₃ (AuCu₃ structure type), exist in the Fe–Pt binary system [1] and the formation has been reported of seven binary compounds, PrPt₅ (CaCu₅ structure type), PrPt₃ (Cu₂Mg structure type), PrPt₂ (Cu₂Mg structure type), Pr₃Pt₄ (Pd₄Pu₃ structure type), PrPt (BFe structure type), Pr₃Pt₂ (Er₃Ni₂ structure type) and Pr₇Pt₃ (Fe₃Th₇ structure type), in the Pr-Pt binary system [2]. It was, however, reported in Ref. [3] that PrPt₃ did not exist. According to Ref. [4], three compounds Fe₁₇Pr₂ (Th₂Zn₁₇ structure type), Fe₇Pr (Th₂Zn₁₇ structure type) and Fe₂Pr (Cu₂Mg structure type) exist in the Fe-Pr binary system; it was proposed that Fe₇Pr was probably the same compound as Fe₁₇Pr₂ for they have a nearly the same composition and a completely the same structure. In Ref. [5], Fe₂Pr was reported to be unstable except at high pressure. Crystallographic data for the binary compounds of the Fe–Pt, Fe–Pr, Pr–Pt systems are summarized in Table 1. The ternary diagram and ternary compounds of the Fe–Pt–Pr system were not reported. The results of the investigation of the phase relations in the Fe–Pt–Pr system at 1173 K are given in the present work. #### 2. Experimental The solid-state phase equilibria in the Fe–Pt–Pr system at 1173 K were constructed by using the results of the X-ray phase analysis of 60 samples, as well as those obtained from scanning electron microscopy and energy dispersion spectroscopy on some selected samples. All the samples were prepared by arc-melting of pure metals (the purity of the ingredients is better than 99.9 wt.%) under purified argon. They were remelted not less than four times to ensure good homogeneity. The mass losses after the melting were less than 0.5 wt.%. After melting, the samples were sealed in quartz tubes pre-evacuated and refilled with some purified argon and annealed at 1173 K for 2 weeks. After annealing, the ampoules with the samples were quenched in water. ^{*} Corresponding author. E-mail address: juwairen713@hotmail.com (R. Jing). Table 1 Crystallographic data for the binary compounds of the Fe–Pt, Fe–Pr, Pr–Pt systems | Compounds | Structure type | Space group | Lattice parameters (nm) | | | Ref. | |----------------------------------|---------------------------------|--------------|-------------------------|--------|--------|-------| | | | | \overline{a} | b | c | | | Fe ₃ Pt | AuCu ₃ | Pm3̄m | 0.3727 | _ | - | [1,6] | | Fe ₃ Pt | Cu | $Fm\bar{3}m$ | 0.3723 | _ | _ | [1,6] | | Fe ₃ Pt | W | $Im\bar{3}m$ | 0.2969 | _ | _ | [1,6] | | FePt | AuCu ₃ | $Pm\bar{3}m$ | 0.3841 | _ | _ | [1,6] | | FePt | Pa | I4/mmm | 0.3905 | _ | 0.3735 | [1,6] | | FePt ₃ | AuCu ₃ | $Pm\bar{3}m$ | 0.3872 | _ | _ | [1,6] | | PrPt ₅ | CaCu ₅ | P6/mmm | 0.5353 | _ | 0.4386 | [3,6] | | PrPt ₃ | Cu ₂ Mg | $Fd\bar{3}m$ | 0.7644 | _ | _ | [3,6] | | PrPt ₃ | AuCu ₃ | $Pm\bar{3}m$ | 0.4065 | _ | _ | [3,6] | | PrPt ₂ | Cu ₂ Mg | $Fd\bar{3}m$ | 0.7713 | _ | _ | [3,6] | | Pr_3Pt_4 | Pd_4Pu_3 | $R\bar{3}$ | 1.3590 | _ | 0.5769 | [3,6] | | PrPt | BFe | Pnma | 0.7282 | 0.4594 | 0.5696 | [3,6] | | PrPt | BCr | Cmcm | 0.3891 | 1.0899 | 0.4569 | [3,6] | | Pr ₃ Pt ₂ | Er ₃ Ni ₂ | $R\bar{3}$ | 0.8959 | _ | 0.6980 | [3,6] | | Pr ₇ Pt ₃ | Fe ₃ Th ₇ | $P6_3mc$ | 1.0137 | _ | 0.6376 | [3,6] | | Fe ₁₇ Pr ₂ | Th_2Zn_{17} | $R\bar{3}m$ | 0.8585 | _ | 1.2464 | [2,7] | | Fe ₇ Pr | Th_2Zn_{17} | $R\bar{3}m$ | 0.8582 | _ | 1.2460 | [2,7] | | Fe ₂ Pr | Cu ₂ Mg | $Fd\bar{3}m$ | 0.6760 | _ | _ | [2,7] | | Fe ₂ Pr | Cu_2Mg | $P6_3/mmc$ | 0.5260 | _ | 0.8620 | [2,7] | The brittle samples were ground to powders in a ceramic mortar for X-ray diffraction with Si as the internal standard. A few toughness samples were pressed into slices $(7 \text{ mm} \times 3 \text{ mm} \times 1 \text{ mm})$ and sealed again in quartz tubes, then annealed under the protection of purified argon at 1173 K for a week to eliminate the stress and quenched in water for X-ray diffraction. Phase analysis was carried out using X-ray diffraction (Cu K α radiation), scanning electron microscopy and energy dispersion spectroscopy techniques. #### 3. Results and discussion #### 3.1. Phase analysis #### 3.1.1. Binary Pr-Pt system According to Ref. [3], PrPt₃ (AuCu₃ structure type) does not exist in Pr–Pt system. We prepared some samples between the PrPt₂ compound and the PrPt₅ compound in the binary Pr–Pt system. From the X-ray diffraction data showed in Fig. 1a, one can clearly see that the PrPt₃ compound (AuCu₃ structure type) exists. This pattern is in good agreement with the calculated result (Fig. 1b) obtained by means of the software of PowderCell [6] to directly treat the crystallographic data of the PrPt₃ compound [7]. No traces of the PrPt₂ and PrPt₅ compounds were observed in the observed X-ray pattern of the alloy of PrPt₃. Thus, it can be concluded that the PrPt₃ compound exists under our experimental condition. Pr₃Pt₄ compound (Pd₄Pu₃ structure type) exists up to 573 K in the Pr–Pt binary system [8]. It is confirmed that Pr₃Pt₄ compound exists as well at 1173 K, which is seem in the top part of Fig. 2. However, it is surprising that Pr₃Pt₄ does not exist in the Fe–Pt–Pr ternary alloys with more than 1 at% Fe according to X-ray diffraction data at the bottom part of Fig. 2. This suggests that Pr₃Pt₄ has decomposed and formed the other two phases, PrPt and PrPt₂. It reveals as well that the presence of Fe destabilizes the Pr₃Pt₄ compound relative to the other two phases. Further work is underway and detailed results will be reported in another paper. #### 3.1.2. Binary Fe-Pr system There is an argument whether Fe₇Pr exists or not in the binary Fe–Pr system [4]. According to the JCPDS-PDF card, both Fe₇Pr and Fe₁₇Pr₂ compounds belong to hexagonal Th₂Zn₁₇ structure type, space group $R\bar{3}m$ and their cell parameters are approximately equal (Fe₁₇Pr₂: a=8.581 Å, c=12.46 Å; Fe₇Pr: a=8.582 Å, c=12.46 Å) [9]. Hence, in Ref. [4], the author presumed that Fe₇Pr and Fe₁₇Pr₂ are the same compounds. We prepared some samples between the Fe₁₇Pr₂ compound and the Fe₂Pr compound in the binary Fe–Pr system. Their X-ray diffraction results show that there Fig. 1. Observed XRD pattern of the PrPt₃ compound annealed at 1173 K for 2 weeks (a) and calculated XRD pattern of PrPt₃ compound (b). ### Download English Version: # https://daneshyari.com/en/article/9803813 Download Persian Version: https://daneshyari.com/article/9803813 <u>Daneshyari.com</u>