

Journal of Alloys and Compounds 387 (2005) 154-159

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Crystal structures of the compounds R_3CuSe_6 (R = Gd, Tb and Dy) and TbCu_{0.34}Te₂

L.D. Gulay*, I.D. Olekseyuk

Department of General and Inorganic Chemistry, Volyn State University, Voli Avenue 13, 43009 Lutsk, Ukraine

Received 2 May 2004; accepted 8 June 2004

Abstract

The crystal structures of the compounds R_3CuSe_6 (R = Gd, Tb and Dy) (Sm₃CuSe₆ structure type, space group *Pbcm*, Pearson symbol *oP40*) and TbCu_{0.34}Te₂ (LaCu_{0.28}Te₂ structure type, space group *Pbcm*, Pearson symbol *oP13.36*) were determined by means of X-ray powder diffraction: a = 0.70902(3) nm, b = 0.77850(3) nm, c = 1.68576(7) nm, $R_I = 0.0882$ (Gd₃CuSe₆); a = 0.70630(3) nm, b = 0.77396(3) nm, c = 1.67913(8) nm, $R_I = 0.0806$ (Tb₃CuSe₆); a = 0.70463(4) nm, b = 0.76962(4) nm, c = 1.6680(1) nm, $R_I = 0.0928$ (Dy₃CuSe₆); a = 0.75580(3) nm, b = 0.81753(3) nm, c = 0.60828(2) nm, $R_I = 0.0864$ (TbCu_{0.34}Te₂). © 2004 Elsevier B.V. All rights reserved.

Keywords: Chalcogenides; Rare earth compounds; Cu compounds; Se compounds; Te compounds; Crystal structure; X-ray powder diffraction

1. Introduction

The existence of the Sm₃CuSe₆ and Y₃Cu_{0.685}Se₆ compounds (Sm₃CuSe₆ structure type, space group *Pbcm*) have been reported in Refs. [1,2], respectively. The crystal structure of the LaCu_{0.28}Te₂ compound (LaCu_{0.28}Te₂ structure type, space group *Pbcm*) has been determined in Ref. [3]. The formation of the compounds RCu_xTe₂ (R = Ce, Pr, Nd, Sm, Gd and Dy) isostructural to LaCu_{0.28}Te₂ have been established in Refs. [4–6].

This paper presents part of a systematic investigation of ternary rare earth chalcogenides with transition metals. The crystal structures of the new ternary compounds R_3CuSe_6 (R = Gd, Tb and Dy) and TbCu_{0.34}Te₂ are given.

2. Experimental details

The alloys were prepared by fusion of the high purity elements (the purity of the ingredients was better than 99.9 wt.%) in evacuated quartz ampoules. The synthesis was realized in a shaft furnace. The ampoules with the components were heated with a rate of 30 K/h to the maximal temperature of

* Corresponding author.

E-mail address: gulay@lab.univer.lutsk.ua (L.D. Gulay).

the synthesis, i.e. to 1420 K. The samples were kept at the maximal temperature during 4 h. After that they were cooled slowly to 870 K with a rate of 10 K/h and annealed at this temperature during 240 h. After annealing the ampoules with the samples were quenched in cold water.

X-ray powder diffraction pattern of the samples were recorded using a DRON-4-13 powder diffractometer (Cu K α radiation, $10^{\circ} \le 2\Theta \le 80^{\circ}$, step scan mode with a step size of 0.05° and counting time of 1 s per data point). Phase analysis was carried out. X-ray powder diffraction patterns of the samples for the crystal structure determination were recorded using a DRON-4-13 powder diffractometer (Cu K α radiation, $10^{\circ} \le 2\Theta \le 100^{\circ}$, step scan mode with a step size of 0.05° and counting time of 20 s per data point).

The crystal structure determination was performed using the CSD [7].

3. Results

3.1. Crystal structures of the R_3CuSe_6 (R=Gd, Tb and Dy) compounds

The existence of the R_3CuSe_6 (R = Gd, Tb and Dy) compounds was established during the investigation of the phase relations in the R–Cu–Se (R = Gd, Tb and Dy) systems.

 $^{0925\}text{-}8388/\$$ – see front matter 0 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2004.06.025

Table 1 Results of the crystal structure determination of the R_3CuSe_6 (R = Gd, Tb and Dy) compounds

-	· · · · ·		
Compound	Gd ₃ CuSe ₆	Tb ₃ CuSe ₆	Dy ₃ CuSe ₆
Structure type	Sm ₃ CuSe ₆	Sm ₃ CuSe ₆	Sm ₃ CuSe ₆
Number of formula units per unit cell	4	4	4
Space group	Pbcm	Pbcm	Pbcm
<i>a</i> (nm)	0.70902(3)	0.70630(3)	0.70463(4)
<i>b</i> (nm)	0.77850(3)	0.77396(3)	0.76962(4)
<i>c</i> (nm)	1.68576(7)	1.67913(8)	1.6680(1)
Cell volume (nm ³)	0.9305(1)	0.9179(1)	0.9045(2)
Number of atoms in cell	40	40	40
Calculated density (g/cm ³)	7.2023	7.3374	7.525
Absorption coefficient (cm ⁻¹)	1669.85	1386.34	1466.57
Radiation and wavelength (nm)	Cu 0.154178	Cu 0.154178	Cu 0.154178
Diffractometer	Powder DRON-4-13	Powder DRON-4-13	Powder DRON-4-13
Mode of refinement	Full profile	Full profile	Full profile
Number of atom sites	7	7	7
Number of free parameters	27	27	27
2Θ and $\sin \Theta / \lambda$ (max)	99.71 0.496	99.77 0.496	99.65 0.496
R_I, R_P	0.0882 0.1545	0.0806 0.1582	0.0928 0.1739
Scale factor	1.057(6)	1.114(8)	0.978(5)
Texture axis and parameter	[100] 1.00(2)	[100] 0.96(2)	[100] 1.04(3)

The similarity of the X-ray powder diffraction patterns of the compounds R_3CuSe_6 (R = Gd, Tb and Dy) and the recently reported compound $Y_3Cu_{0.685}Se_6$ (Sm₃CuSe₆ structure type) [2] allows it us to assume that these compounds are isostructural to Sm₃CuSe₆. The peaks of the X-ray powder diffraction patterns of these samples were indexed in an orthorhombic

unit cell with the lattice parameters (Table 1) close to those reported for Sm_3CuSe_6 . No extra peaks were present in the X-ray powder diffraction patterns of the R_3CuSe_6 (R = Gd, Tb and Dy) samples. The results of the crystal structure determination of the R_3CuSe_6 (R = Gd, Tb and Dy) compounds are given in Table 1. The atomic coordinates and isotropic

 2Θ (degree)

Fig. 1. The experimental and calculated diffractograms and the corresponding difference diagram for Gd₃CuSe₆.

Download English Version:

https://daneshyari.com/en/article/9804156

Download Persian Version:

https://daneshyari.com/article/9804156

Daneshyari.com