

Journal of Alloys and Compounds 386 (2005) 246-252

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Ternary system Li₂O–K₂O–Nb₂O₅ Part II: Growth of stoichiometric lithium niobate

Á. Péter^a, K. Polgár^a, M. Ferriol^{b,*}, L. Pöppl^c, I. Földvári^a, M. Cochez^b, Z.S. Szaller^a

 ^a Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
^b Laboratoire de Chimie et Applications, E.A. No. 3471, Université de Metz, Rue Victor Demange, 57500 Saint-Avold, France
^c Department of Inorganic and Analytical Chemistry, Eötvös University Budapest, P.O. Box 32, H-1518 Budapest 112, Hungary

Received 26 December 2003; accepted 30 April 2004

Abstract

Growth conditions of stoichiometric or near-stoichiometric lithium niobate (sLN) from K₂O containing fluxes have been studied by investigating phase equilibria in the ternary system Li₂O–K₂O–Nb₂O₅. The crystallization area of LiNbO₃ was confirmed by growth experiments on the g1 (LiNbO₃–K₂O), g2 (LiNbO₃–ternary eutectic liquid (E_t : 45.0 ± 1.5 mol% Nb₂O₅, 26.0 ± 1.5 mol% K₂O and 29.0 ± 1.5 mol% Li₂O)) and g3 (LiNbO₃–KNbO₃) joins. The yield and the composition of LiNbO₃ single crystals were tested for a wide range of starting compositions. From these experiments, the starting compositions leading to stoichiometric lithium niobate have been determined. © 2004 Elsevier B.V. All rights reserved.

Keywords: Crystal growth; X-ray diffraction; Nonlinear optics; Thermal analysis

1. Introduction

In the binary system $Li_2O-Nb_2O_5$ [1–4], lithium niobate LiNbO₃ (LN) melts congruently with the composition of about 48.6 mol% Li₂O and single crystals can be grown from melt by the Czochralski technique. The lithium deficiency in the congruent crystals leads to intrinsic structural defects and affects many physical properties. Therefore, there exists a significant demand for stoichiometric or quasistoichiometric crystals having a perfect crystal lattice and improved properties.

One of the most effective methods of growing stoichiometric LiNbO₃ (sLN) single crystals is the high temperature top-seeded solution growth (HTSSG) technique from $K_2O-Li_2O-Nb_2O_5$ fluxes [5]. In this method, the growth usually starts from a composition with Li/Nb ratio either 1 or

* Corresponding author. Tel.: +33-3-87-93-91-85;

fax: +33-3-87-93-91-01.

E-mail address: mferriol@iut.univ-metz.fr (M. Ferriol).

0.945 (ratio of the congruently melting lithium niobate) and K_2O added from 10 to 16 mol%. Recently, we have shown that the real composition of the HTSSG grown crystals depends to a large extent on the choice of the appropriate crystal-lization temperature and, therefore, of the starting melt composition [6]. Thus, the optimization of the flux and growth conditions requires an extended knowledge of the crystal-lization range of LiNbO₃ in the Li₂O–K₂O–Nb₂O₅ system.

In previous works [7–8], we reported phase equilibrium studies on the ternary system $Li_2O-K_2O-Nb_2O_5$. Part I [8] of this work presents in detail the solid–liquid equilibria near the LiNbO₃ compound. In this report, based on the results of these studies, some issues of the stoichiometric LN single crystal formation are treated:

- Determination of the limits of LiNbO₃ liquidus surface and investigation of the yield of LiNbO₃ single crystal depending on the starting composition.
- Outline of the area where stoichiometric or nearstoichiometric single crystalline LiNbO₃ can be grown.

 $^{0925\}text{-}8388/\$$ – see front matter M 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2004.04.151

Á. Péter et al. / Journal of Alloys and Compounds 386 (2005) 246-252

2. Experimental methods

Crystals were grown by the HTTSSG method in a diameter controlled growth apparatus. The technical details of the material synthesis and crystal growth are given in refs. [5,7]. The starting materials used were Starck LN grade Nb₂O₅ and Merck Suprapure K₂CO₃ and Li₂CO₃ pre-reacted in the solid phase. Generally the maximum amount of the LiNbO₃ single crystal phase was pulled out, after which the growth process was continued and then, "new" phases were crystallized. Thus, from the yield of LiNbO₃, the mass balance of the crystallization can be obtained and the co-ordinates of the limits of LiNbO₃ liquidus surface can be calculated and compared with those given by the phase diagram.

The constituent phases were assessed by X-ray powder diffraction analysis with a Philips PW 1710 diffractometer using Cu K α radiation in the 2θ range of $0-80^\circ$. The overall composition of the new phases and remaining flux were determined by chemical analysis of the major components. In these experiments, the LiNbO₃ crystals were pulled in 18 mm diameter along the (00.1) = Z-axis with a rate of 0.1-0.2 mm/h and rotation speed of 6-28 rpm. The real stoichiometry of the crystals and its evolution during the growth were determined by using a standardized spectroscopic test recording the UV absorption edge position of slices cut along the growth axis from the top to bottom part of the crystal [9].

3. Results and discussion

In the ternary system, all compositions are expressed as molar percentages of $Nb_2O_5(X)$ and $K_2O(Y)$.

3.1. Assessment of the phase diagram by crystal growth experiments

The polythermal projection of LiNbO₃ crystallization field in the ternary system Li₂O-K₂O-Nb₂O₅ is shown in Fig. 1 as presented in Part I [8]. Accordingly, the LiNbO3 liquidus surface is well determined above the LiNbO₃-KNbO₃ join, but beyond it and for Nb₂O₅ contents higher than 50–55mol%, the outlined equilibrium domains are only estimated. Thus, the LiNbO₃ liquidus surface is limited by four monovariant lines: Liq + Li₃NbO₄ + LiNbO₃, Liq + KNbO₃ + LiNbO₃, Liq + "KLN solid solution" + LiNbO₃ and Liq + LiNb₃O₈ + LiNbO₃ (the term "KLN solid solution" is used for the ternary tungsten bronze-type solid solution encountered beyond Nb₂O₅ = 50 mol% and $K_2O = 25$ mol%). At 997 °C, the ternary eutectic reaction occurs between liquid, LiNbO₃, β-Li₃NbO₄ and KNbO₃. The composition of the eutectic liquid (E_t) is 45.0 \pm 1.5 mol% Nb₂O₅, 26.0 \pm 1.5 mol% K₂O and 29.0 \pm 1.5 mol% Li₂O. A quasi-peritectic reaction has also been identified at a temperature of about 1050–1055 °C. The quasi-peritectic liquid (T) has a composition roughly equal to: 49 mol% Nb₂O₅, 25.5 mol% K₂O and 25.5 mol% Li₂O.

Up to now, the single-crystal growth technique of sLN was experienced only along the LiNbO₃–K₂O (Y = 100-2X) join: i.e. from fluxes with starting composition of a [Li]/[Nb] ratio equal/or near to 1 and with various potassium oxide contents [5–10]. In the present work, growth experiments have been conducted from various fluxes listed in Table 1. This table summarizes growth results and the constituent phases identified in the grown boules as well. In these growth experiments, besides the starting compositions located on the LiNbO₃–K₂O line (labelled as g1 in Table 1 and in Fig. 1),

Fig. 1. Expanded view of the polythermal projection of LiNbO₃ crystallization field (E_t : LiNbO₃–Li₃NbO₄–KNbO₃ ternary eutectic point, T: ternary quasiperitectic point, e_1 : LiNbO₃–Li₃NbO₄ binary eutectic point, e_2 : LiNbO₃–LiNb₃O₈ binary eutectic point), light grey area: crystallization region of fully stoichiometric lithium niobate (LN), line AB: quasi-binary limit (see text).

Download English Version:

https://daneshyari.com/en/article/9804233

Download Persian Version:

https://daneshyari.com/article/9804233

Daneshyari.com