

Available online at www.sciencedirect.com

materials letters

www.elsevier.com/locate/matlet

Materials Letters 59 (2005) 1709-1713

The fracture toughness of CO₂ corrosion scale in pipeline steel

F. Yu, K.W. Gao*, Y.J. Su, J.X. Li, L.J. Qiao, W.Y. Chu, M.X. Lu

Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, China

Received 22 September 2004; received in revised form 11 January 2005; accepted 13 January 2005 Available online 29 January 2005

Abstract

The fracture toughness of CO_2 corrosion scale in X65 pipeline steel has been measured using Vicker's indentation on a polished cross-section of the scale and the variation of the fracture toughness with scale forming temperature has been investigated. The results show that CO_2 corrosion scale formed at 65 °C to 90 °C is (Fe,Ca)CO₃ and that at 115 °C is (Fe,Ca,Mg)CO₃, respectively. The scale thickness decreases and the amount of Ca in the scale increases with increasing scale forming temperature. The fracture toughnesses of the outer and inner layers of the scale formed at 65 °C are 0.68 MPam^{1/2} and 1.46 MPam^{1/2}, respectively. The fracture toughness of the CO_2 corrosion scale decreases with increasing scale forming temperature. © 2005 Elsevier B.V. All rights reserved.

Keywords: CO2 corrosion scale; Fracture toughness; Pipeline steel

1. Introduction

Carbon dioxide corrosion of carbon and low-alloy steels is a common problem in oil and gas industry [1]. The CO₂ corrosion scale has been determined as FeCO₃, which has been reported to be nonproductive below 60 °C, and protectiveness has been said to increase with temperature above 60 °C [2]. However, Ikeda et al. reported that above 100 °C, Fe₃O₄ and then Fe₂O₃ was formed, and FeCO₃ codeposition with Fe₃O₄ was considered hazardous [3]. Hassan et al. considered that for X52 pipeline steel corrosion product formed below 60 °C was FeCO₃, and that above 60 °C was Fe(OH)₂CO₃, which decreased the corrosion rate [4].

Cracking or locally breaking of the corrosion scale will cause pit or/and increase corrosion rate [5,6]. It is clear that the lower the fracture toughness of the scale, the easier to crack or break the scale during CO_2 corrosion. However, there is lack of the data of the fracture toughness of CO_2 corrosion scale. The fracture toughness, K_{IC} , of CO_2

E-mail address: kwgao@mater.ustb.edu.cn (K.W. Gao).

corrosion scale in N80 tube steel was measured through Vicker's indentation on a polished surface with CO₂ corrosion scale [7]. The measured $K_{\rm IC}$ =7.2 MPam^{1/2} is too high and is not valid fracture toughness of the scale. Because all equations of $K_{\rm IC}$ calculated through Vicker's indentation or nanoindentation are only suitable to bulk material [8,9]. For film, coating or scale on the surface of a matrix, the radial cracks can generate during indentation [10,11]. Up to now, however, there is no suitable equation to calculate $K_{\rm IC}$ of the composite material with different Young's modulus. When the film or scale is very thin because of polishing, the plastic deformation of the matrix metal will resist growth of the radial crack on the scale, resulting in higher apparent fracture toughness. Therefore, the only way to get real $K_{\rm IC}$ of film or scale is to use a polished cross-section sample with a film or scale over several micrometers.

The CO_2 corrosion scale formed at high temperature for a long time has a thickness over 10 μm [12]. By means of Vicker's indentation on a polished cross-section, it is possible to obtain a valid fracture toughness of the CO_2 corrosion scale. Thus, the objective of this paper is to measure the fracture toughness of CO_2 corrosion scale and to study the effect of microstructure on

^{*} Corresponding author.

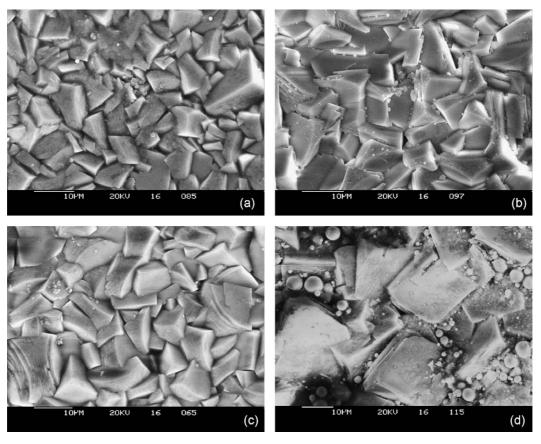


Fig. 1. Surface morphology of CO_2 corrosion scales formed at of 65 °C (a), 75 °C (b), 90 °C (c) and 115 °C (d).

the fracture toughness using the scales formed at various temperatures.

2. Experimental procedure

The chemical composition of X65 pipeline steel used in this study was 0.04 C, 0.2 Si, 1.5 Mn and 0.02 Mo. The polished and cleaned samples were put in the solution in an autoclave with CO_2 pressure of 1MPa. The solution had a

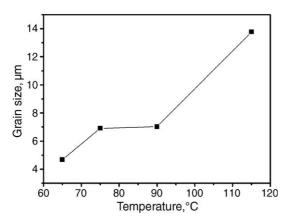


Fig. 2. Grain sizes of scales vs. scale forming temperature.

composition in mg/L of 2568 Na $^{++}$ K $^+$, 64 Ca $^{2+}$, 78 Mg $^{2+}$, 3580 Cl $^-$, 48 SO $_4^2$ and 863 HCO $_3^-$. CO $_2$ gas was allowed to bubble in the solution to remove oxygen. The solution was heated to 65 °C, 75 °C, 90 °C and 115 °C, respectively, and kept for 240 h.

After X-ray diffraction analysis and surface observation under SEM, the samples were sealed by epoxy, and then cut along the cross-section.

Fig. 3. XRD pattern of CO $_2$ corrosion scale formed at temperature of 65 $^{\circ}C$ (a), 75 $^{\circ}C$ (b), 90 $^{\circ}C$ (c) and 115 $^{\circ}C$ (d), respectively.

Download English Version:

https://daneshyari.com/en/article/9808586

Download Persian Version:

https://daneshyari.com/article/9808586

<u>Daneshyari.com</u>