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Most of the estimators suggested for the estimation of spatial autoregressivemodels are generally inconsistent in
the presence of an unknown form of heteroskedasticity in the disturbance term. The estimators formulated from
the generalized method of moments (GMM) and the Bayesian Markov Chain Monte Carlo (MCMC) frameworks
can be robust to unknown forms of heteroskedasticity. In this study, the finite sample properties of the robust
GMM estimator are compared with the estimators based on the Bayesian MCMC approach for the spatial
autoregressive models with heteroskedasticity of an unknown form. A Monte Carlo simulation study provides
evaluation of the performance of the heteroskedasticity robust estimators. Our results indicate that the MLE
and the Bayesian estimators impose relatively greater bias on the spatial autoregressive parameter when there
is negative spatial dependence in themodel. In terms of finite sample efficiency, the Bayesian estimators perform
better than the robust GMM estimator. In addition, two empirical applications are provided to evaluate relative
performance of heteroskedasticity robust estimators.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Most of the estimation methods suggested in the literature are valid
under the assumption that the disturbance terms of spatial models
are independently and identically distributed (i.i.d.) or i.i.d. normal.
However, in many regression applications, heteroskedasticity may well
be present. For example, cross-sectional units usually differ in size and
some other characteristics, which in turn implies that the disturbance
terms in the regression analyses across these cross-sectional units may
be heteroskedastic. It may also be present in a random coefficient
model, where the parameters of the model are random around fixed
values. In this case, heteroskedasticity depends on the exogenous vari-
ables of the spatial models. Moreover, in regression analysis, many de-
pendent variables are constructed by data aggregation. In such a case,
heteroskedasticity arises from the process of averaging with different

numbers of observations when the data is getting aggregated (Griffiths,
2007; Lee, 2010).1

In the present study, we evaluate the performance of various
heteroskedasticity robust estimators suggested in the literature for
spatial autoregressive models. To this end, we conduct a Monte Carlo
study and provide two empirical illustrations to show how these esti-
mators perform in applied research.

In the presence of heteroskedastic disturbances, the ML and GMM
estimators are generally inconsistent. The ML estimator is inconsistent
if heteroskedasticity is not incorporated into estimation, because the
likelihood function is not maximized at the true parameter values.2

The GMM estimators are also inconsistent since the moment functions
are often designed under the assumption that disturbances are i.i.d.
(Kelejian and Prucha, 1998, 1999; Liu et al., 2010). Hence, the orthogo-
nality conditions for the moment functions may not be satisfied.

To handle unknown formsof heteroskedasticity, Kelejian and Prucha
(2010) extend their two-step GMM estimation approach by modifying
the moment functions for a spatial model that has a spatial lag in the
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1 For some recent empirical studies, see Lin and Lee (2010) and Doğan and Taşpınar
(2013b).

2 For many spatial model specifications, the ML estimation has been the most widely
used technique and has often been the only technique that is implemented. The ML ap-
proach is well treated in Anselin (1988), Lee (2004) and LeSage and Pace (2009).
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dependent variable and the disturbance term (for short SARAR(1,1)).
Badinger and Egger (2011) extend the robust estimation approach in
Kelejian and Prucha (2010) to the case of SARAR(p,q) specification.
Lin and Lee (2010) suggest a one-step robust GMM estimator for the
model with only spatial dependence in the dependent variable (for
short SARAR(1,0)).3 In this approach, the parameters of a spatial
model are simultaneously estimated by a GMM estimator formulated
from the combination of a set of linear and quadratic moment functions
(Lee, 2007a, 2007b; Lee and Liu, 2010; Liu et al., 2010).

The moment functions considered for both two-step and one-step
GMM estimators are motivated by the reduced form of the spatial
models. For example, the reduced form for the case of SARAR(1,0)
indicates that the endogenous spatial lag of the dependent variable is
a function of a stochastic and a non-stochastic variable. The linear mo-
ment functions are formulated from the non-stochastic part and the
quadratic moment functions are formulated for the stochastic part.
The two-step GMM approach of Kelejian and Prucha is motivated by
computational simplicity as theML estimation involves significant com-
putational burden for the large samples. Despite the computational
advantage, the two step GMM estimator is inefficient relative to the
one-step GMM estimators suggested in Lee (2007a, 2007b), Liu et al.
(2010) and Lee and Liu (2010).

An alternative toML and GMM/IV estimationmethods is the Bayesian
estimation method, which has been receiving attention in recent
years. Bayesian data analysis is distinctly different from the classical
(or frequentist) analysis in its treatment of parameters of the model.
In Bayesian econometrics the parameter vector is a random variable,
and Bayesian analysts formulate probabilistic statements about the
parameters before observing any data. These ex-ante probabilities
are called priors and usually take the form of a probability distribu-
tion with known moments. This notion of the prior probabilities
(or subjective probabilities) is totally absent in classical economet-
rics where all estimation and inference are based on observed data.
In both approaches, the likelihood function has the same functional
form and reflects the relation between data and the parameters of inter-
est. In Bayesian approach, the likelihood function is combined with prior
functions via Bayes' rule to construct the posterior probability distribution
of parameters. The posterior distribution function of the parameter vector
contains the information necessary for the estimation and inference.

The Bayesian approach requires the evaluation of higher dimensional
integrals to obtain posterior expectations, marginal likelihoods, and
predictive densities. The application of the Bayesian methods to the
estimation of spatial models follows the path of the progress that has
been made in the context of Bayesian computation techniques. Hepple
(1995b) identifies four phases for the development of Bayesian computa-
tion techniques. In the first phase, Bayesian studies involved problems
that can be characterized with well known probability distributions
such that the characteristics of posterior distributions such as means
and covariances can be analytically derived. In the secondphase, Bayesian
studies focused on techniques through which problems involving
multidimensional probability distributions can be reduced to univariate
or bivariate integrations. In this phase, numerical techniques for the uni-
variate and bivariate integration were used. In the third phase, Bayesian
analysts worked on efficient procedures for higher order integrations.
Gauss–Hermite, importance sampling and Monte Carlo integration tech-
niques were used to tackle complicated and high-dimensional problems.
In the fourth phase, Markov ChainMonte Carlo (MCMC) simulation tech-
niques were introduced that make the computation of higher dimension
problems feasible. The advent of theMCMC approach represents a shift in
thinking, where the focus on the question of analytical moment calcula-
tion is replaced with a more general question of sampling issues from
the posterior distributions (Albert and Chib, 1993; Casella and George,
1992; Chib, 2001). In the Gibbs sampling version of the MCMC approach,

the joint posterior distribution is decomposed into conditional posterior
distributions through which random draws (or a simulated sample) can
be obtained. Inferences such as posterior mean and posterior covariance
matrix can be estimated from the simulated sample obtained from the
conditional posterior densities.

The development in Bayesian computation techniques provides a
wide range of tools that can be applied to the estimation of spatial
models. The early literature on the Bayesian perspective on spatial
models uses combinations of tools developed during the period from
the first to the third phase. For example, Hepple (1979) analytically
derives the joint posterior and marginal posterior distributions of
parameters for a spatial model containing a spatial lag in the distur-
bance term. The posterior moments are calculated through numerical
univariate and bivariate integration techniques.

Anselin (1982, 1988) considers the Bayesian approach for pure
spatial autoregressive and spatial error models. Diffuse priors for
parameters of models are suggested andmarginal posterior distribu-
tions of parameters are analytically derived. The posterior mean of
the autoregressive parameter for a pure spatial autoregressive model in
Anselin (1982) is estimated with univariate numerical integration. A
small Monte Carlo simulation study in Anselin (1982) demonstrates
that the Bayesian estimator performs as well as the ML estimator for
larger values of the autoregressive parameter and larger samples.4

Hepple (1995a, 1995b) develops Bayesian analyses for major
spatial specifications including the SARAR(1,0) model, SARAR(0,1)
(or the SEM) model and spatial moving average models (for short
SARMA(0,1)). In each case, the joint posterior distributions of theparam-
eters are stated from which the marginal posterior of the spatial
autoregressive parameters is analytically derived. The analytical deriva-
tion for the marginal posterior distribution of the parameters of the
exogenous variables is not available as the spatial autoregressive param-
eters can not be analytically integrated out from the joint posterior distri-
bution. However, the dimension of joint posterior can be reduced to two
dimensions so that bivariate numerical integration techniques can be
used for the estimation of the marginal posterior moments. As a result,
the estimate of the spatial autoregressive parameters can be obtained
through univariate numerical integration, and the estimates of the pa-
rameters of the exogenous variables can be obtained through bivariate
numerical integration over a grid of pairs of values.5

Hepple (2002, 2003) provides further analytical simplifications such
that the moments of the marginal posterior distributions of the
exogenous variables in spatial models with only one autoregressive pa-
rameter can be obtained through univariate numerical integration.
However, for the case of SARAR(1,1) and SARMA(1,1) where there are
two spatial autoregressive parameters the calculation of thesemoments
again requires bivariate integration over the parameter space of
autoregressive parameters.

The recent studies use the MCMC approach to estimate spatial
models. This approach is more appropriate for cases where marginal
posterior distributions are difficult to simplify analytically and to inte-
grate numerically. The MCMC approach is introduced for most types
of spatial models in LeSage (1997) and LeSage and Pace (2009).
Kakamu and Wago (2008) compare finite sample properties of the
Bayesian estimators based on the MCMC approach with that of the ML
estimator for the static panel spatial autoregressive model. The Monte
Carlo simulation results in Kakamu and Wago (2008) show that the
Bayesian estimator is virtually as efficient as the ML estimator.

In spatial models, the boundaries of the parameter space for
spatial autoregressive parameters are known, which facilitate the

3 For a robust 2SLS estimator of the SARAR(1,0) specification, see Anselin (2006).

4 To the best of our knowledge, Anselin (1982) is the first study, where small sample
properties of theML estimator are comparedwith the frequentist properties of the Bayesian
estimator in the context of spatial models.

5 Note that as the dimension of spatial parameter increases, the dimension of numerical
integration rises. For example, for the case of SARAR(1,1) the marginal posterior of
autoregressive parameters is two dimensional.
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