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Higher-order spatial econometric models that include more than one weights matrix have seen increasing
use in the spatial econometrics literature. There are two distinct issues related to the specification of these
extended models. The first issue is what form the higher-order spatial econometric model takes, i.e.
higher-order polynomials in the spatial weights matrices vs. higher-order spatial autoregressive processes.
The second issue relates to the parameter space in such models and how this can affect the choice of
model specification, estimation, and inference. We outline a procedure that is simple both mathematically
and computationally for finding the stationary region for spatial econometric models with up to K weights
matrices for higher-order spatial autoregressive processes. We also compare and contrast this approach
with the parameter space for models that incorporate higher-order polynomials in the spatial weights matri-
ces. Regardless of the model utilized in empirical practice, ignoring the relevant parameter region can lead to
incorrect inferences regarding both the nature of the spatial autocorrelation process and the effects of
changes in covariates on the dependent variable.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Higher-order spatial econometric models that include more than
one weights matrix have seen increasing use in the spatial economet-
rics literature, e.g. Brandsma and Ketellapper (1979), Sherrell (1990),
Hepple (1995), Bell and Bocksteal (2000), Bordignon et al. (2003),
Lacombe (2004), Allers and Elhorst (2005), McMillen et al. (2007),
Ward and Gleditsch (2008), Dall'Erba et al. (2008), Elhorst and Fréret
(2009), Lee and Liu (2010), and Badinger and Egger (2011). These so-
called higher order spatial econometric models allow for a richer de-
pendence structure that is not capable of being captured in a standard
single weights matrix spatial econometric model framework. Gener-
ally, there are two ways in which the dependence structure in these
higher-order spatial econometric models can be incorporated. The
first, which has seen the most application in applied studies, is a sim-
ple extension of the single-W spatial autoregressive model to the case
of multiple-W weights matrix models, i.e. the higher-order spatial

autoregressive model case. The second form, which has seen limited
application in applied research, is the incorporation of higher-order
polynomials in the spatial weights matrices. However, issues related
to the appropriate parameter space in these multiple spatial weights
matrix models, regardless of the form they take, have been either ig-
nored or erroneously assumed to be simple extensions of the single
weights matrix case. This may be due to mathematical and computa-
tional difficulties in determining the parameter space or to the pre-
sumption that certain forms of spatial autocorrelation (e.g. negative
spatial autocorrelation) are unlikely to occur.

In this paper, we outline a simple procedure for finding the sta-
tionary region for models with multiple spatial weights matrices
(i.e. K≥2) for the higher-order spatial autoregressive model case as
well as the higher-order polynomials in the spatial weights matrices
case. Finding the appropriate admissible parameter space is impor-
tant for at least two reasons. First, recent advances in the literature
have shown an increased interest in both the theoretical and empiri-
cal aspects of negative spatial autocorrelation, e.g. Griffith and Arbia
(2010). In the present paper, we will show that negative spatial auto-
correlation may also occur as a result of choosing two spatial weights
matrices that partly overlap. Second, obtaining proper parameter
estimates, which are based to some extent on identification of
the proper parameter space, is required for making correct inferences
regarding the effect of changes in independent variables on the
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dependent variable. These so-called “effects estimates”, as developed
by LeSage and Pace (2009), provide summary measures of the direct,
indirect, and total effects and are conditional upon the values of the
spatial autocorrelation parameters. We illustrate the different
methods of calculating these effects estimates with a numerical ex-
ample and show that regardless of the type of higher-order spatial
econometric model utilized in applied practice, completely separating
out the effects estimates for each individual weights matrix is not
feasible.

2. First-order models

Consider a first-order spatial autoregressive process in which the
variable yi (i=1,…,N) is regressed on the variable ∑ jwijyj,

yi ¼ δ∑
N

j¼1
wij yj þ εi; i ¼ 1;…;N ð1Þ

where δ is the spatial autoregressive coefficient, wij is the i,j-th ele-
ment of the exogenous, non-negative N×N spatial weights matrix
W with zero diagonal elements that describes the arrangement of
the spatial units in the sample, and εi are i.i.d. innovations with zero
mean and finite variance σ 2. In matrix notation, the same spatial
autoregressive process can be rewritten as:

Y ¼ δWY þ ε: ð2Þ

This model can be estimated by maximum likelihood (Ord, 1975),
quasi-maximum likelihood (Lee, 2004), instrumental variables1

(Kelejian and Prucha, 1998; Kelejian et al., 2004; Lee, 2003), general-
ized method of moments (Kelejian and Prucha, 1999), or by Bayesian
Markov Chain Monte Carlo (MCMC) methods (LeSage, 1997). Deriv-
ing the asymptotic properties of the maximum likelihood and quasi-
maximum likelihood estimator of model (1), Lee (2004) assumes
that the matrix IN−δW, where IN is an identity matrix of order N, is
nonsingular and that the row and column sums of W are uniformly
bounded.2 Kelejian and Prucha (1999) make the same assumption
to ensure the (unique) definition of the vector Y in terms of the vector
of innovations ε. For a symmetric W, the condition is satisfied as long
as δ is in the interior of (1/ωmin, 1/ωmax), where ωmin and ωmax de-
note, respectively, the smallest and largest real characteristic root of
W. If W is then normalized, either by dividing the elements of each
row by its row sum or by dividing all elements by the largest charac-
teristic root, the parameter space becomes (1/ωmin, 1), since the larg-
est characteristic root of W equals unity in this situation.3 Things are
more complicated when W is asymmetric before normalization. In
fact, a non-symmetric spatial weights matrix may have complex char-
acteristic roots. LeSage and Pace (2009, pp. 88–89) prove that in that
case δ is restricted to the interval (1/rmin, 1), where rmin equals the
most negative purely real characteristic root ofW after normalization.

Kelejian and Prucha (1999) assume that δ is restricted to the inter-
val (−1, 1).4 Their assumption is based on earlier work (Kelejian
and Robinson, 1995) demonstrating that the restriction 1/ωminbδb
1/ωmax – before W is normalized – may be unnecessarily restrictive.
This is because any first-order spatial autoregressive process is de-
fined for every value of δ such that the matrix (IN−δW) is nonsingu-
lar. A simple example taken from Elhorst (2001) illustrates this. LetW

be a binary spatial weights matrix for a sample of just two spatial
units. As a result of this, ωmin=−1 and ωmax=1. Additionally, if
ε∼N(0,σ2IN), then Y∼N 0; 1þδð Þ

1−δ2ð Þσ
2IN

� �
. This shows that when the var-

iance of ε is finite, the variance of titY is also finite as long as δ is dif-
ferent from 1/ωmin or 1/ωmax (see Kelejian and Prucha, 2010, for a
generalization).

Bell and Bocksteal (2000) find it peculiar that the non-admissible
values of δ are directly related to the eigenvalues ofW that, in turn, de-
pend on sample size. In other words, model (1) is characterized by a
non-continuous parameter space that changes when new observations
are added (or eliminated). To obtain a continuum of values, needed
for the large sample theory to hold, Ord (1981) suggests to restrict
δ to 1/ωminbδb1/ωmax before W is normalized and to 1/ωminbδb1
after normalization. Similarly, Kelejian and Robinson (1995) suggest
to restrict δ to −1bδb1 since values of δ smaller than or equal to −1
are very unlikely to occur in practice.

It should be noted that this last restriction emphasizes a similarity
between time-series analysis and spatial econometrics. A first-order
serial autoregressive process:

yt ¼ ρyt−1 þ εt ; ð3Þ

with T observations is stationary if ρ lies in the interval (−1, 1).
However, the same interval for a first-order spatial autoregressive
process would be too restrictive. For normalized spatial weights, the
largest characteristic root is indeed +1, but no general result holds
for the smallest characteristic root, and the lower bound will typically
be less than −1.

3. Second-order models

While there might be some similarities for first-order models, sub-
stantive differences occur when considering second-order models.
The time-series literature (see Beach and MacKinnon, 1978, and the
references therein) has pointed out that a second-order serial autore-
gressive process:

yt ¼ ρ1yt−1 þ ρ2yt−2 þ εt ; ð4Þ

with T observations is stationary if ρ1+ρ2b1, 1+ρ2−ρ1N0 and ρ2N
−1. These constraints define a triangular region with vertices at (−2,
−1), (0, 1) and (2, −1). Hamilton (1994, pp. 29–33) shows that a
second-order serial autoregressive process yt=ρ1yt−1+ρ2yt−2+�t
can also be written as a second-order polynomial in the lag operator
L, (1−ϕ1L−ϕ2L

2)Yt=�t, provided that ϕ1=ρ1+ρ2 and ϕ2=−ρ1ρ2.
A second-order spatial autoregressive process takes the form:

Y ¼ δ1W1Y þ δ2W2Y þ ε; ð5Þ

and a second-order polynomial in two spatial weights matrices W1

and W2:

IN−λ1W1ð Þ IN−λ2W2ð ÞY ¼ ε; ð6Þ

or, alternatively,

Y ¼ λ1W1Y þ λ2W2Y−λ1λ2W1W2Y þ ε: ð7Þ

For simplicity, but without loss of generality, we assume that the
spatial weights matrices W1 and W2 are normalized in the remainder
of this paper.

The model in Eq. (6) “filters” the dependent variable vector Y for
two types of spatial dependence, one reflected by the weights matrix
W1 and the other by W2. Eq. (7) is a logical implication of this view of
modeling spatial dependence and it implies that extending the first-
order model to include more than one spatial weights matrix requires
that we consider a cross-product term that appears asW1W2. Eqs. (5)

1 Kelejian and Prucha (1998) and Lee (2004) point out that the method of instru-
mental variables is ineffective when there are no regressors in the model.

2 The maximum likelihood estimator also requires the error terms to be normally
distributed, while the quasi-maximum likelihood estimator does not.

3 As it is well known, a symmetric spatial weights matrix will not necessarily remain
symmetric after row-standardization.

4 See also Kelejian and Prucha (2002), Kelejian et al. (2004), Lee (2002, 2003) among
others.
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