
GMM estimation of spatial panels with fixed effects and
unknown heteroskedasticity☆

F. Moscone ⁎, E. Tosetti
Brunel University, United Kingdom

a b s t r a c ta r t i c l e i n f o

Article history:
Received 2 November 2010
Received in revised form 13 March 2011
Accepted 20 March 2011
Available online 26 March 2011

JEL classifications:
C2
C5

Keywords:
Spatial panels
Fixed effects
GMM

In this paper we consider the estimation of a panel data regression model with spatial autoregressive
disturbances, fixed effects and unknown heteroskedasticity. Following the work by Kelejian and Prucha
(1999), Lee and Liu (2006a) and others, we adopt the Generalized Method of Moments (GMM) and consider
moments as a set of linear quadratic conditions in the disturbances. As in Lee and Liu (2006a), we assume that
the innermatrices in the quadratic forms have zero diagonal elements to robustify moments against unknown
heteroskedasticity. We derive the asymptotic distribution of the GMM estimator based on such conditions.
Hence, we carry out some Monte Carlo experiments to investigate the small sample properties of GMM
estimators based on various sets of moment conditions.

© 2011 Published by Elsevier B.V.

1. Introduction

In recent years, there has been a growing literature in economics
and econometrics, both applied and theoretical, dealing with spatial
issues. One important area of research is estimation and inference in
the context of regression models with spatially correlated distur-
bances. Estimation of these models can be achieved by applying
parametric methods such as the maximum likelihood (ML) approach
(Anselin, 1988; Mardia and Marshall, 1984) and the generalized
method of moments (GMM) (Kelejian and Prucha, 2010; Kelejian and
Prucha, 1999; Conley, 1999), or semi-parametric techniques like the
spatial HAC estimator by (Kelejian and Prucha, 2007).

GMM estimation of spatial regression models in a single cross sec-
tional setting has been originally advanced by (Kelejian and Prucha,
1999). They focused on a regression equation with spatial autoregres-
sive (SAR) disturbances, and suggested the use of three moment
conditions that exploit the properties of disturbances implied by a
standard set of assumptions. Estimation consists of solving a non-linear
optimization problem, which yields a consistent estimator under a
number of regularity conditions. Recently, considerable work has been
carried out to extend the procedure advanced by Kelejian and Prucha in
various directions. Liu et al. (2006) and Lee and Liu (2006a) suggested
a set of moments that encompass Kelejian and Prucha conditions as
special cases. They considered a vector of linear and quadratic

conditions in the error term, where thematrices appearing in the linear
andquadratic formshavebounded rowand columnnorms(see also Lee,
2007). Hence, they focused on the problem of selecting the matrices
appearing in the vector of linear and quadratic moment conditions, in
order to obtain the lowest variance for the GMM estimator. Lin and Lee
(2010) also showed that these moments can be made robust against
unknown heteroskedasticity by imposing that the diagonal elements of
inner matrices are zero. Lee and Liu (2006b) have extended this
framework to estimate the SAR model with higher-order spatial lags.
Kelejian and Prucha (2010) have generalized their original work to
include spatial lags in the dependent variable as well as allowing for
heteroskedastic disturbances. This setting has been extended by Kapoor
et al. (2007) to estimate a spatial panel regression model with
individual-specific error components. Druska and Horrace (2004)
have introduced the Keleijan and Prucha GMM within the framework
of a panel with SAR disturbances, time dummies and time-varying
spatial weights, while Fingleton (2008a, 2008b) have extended it to the
case of a regression model with spatial moving average disturbances.

In this paper, we focus on GMM estimation of a panel data regression
model with fixed effects, unknown heteroskedasticity, and spatial
autoregressive (SAR) errors. Little work exists on estimation of spatial
panelswithfixed effects. Quasi-maximum likelihood (ML) estimation of a
panel with fixed effects and spatial lags both in the dependent variable
and in the disturbances, under homoskedastic errors, has been developed
by Lee and Yu (2010). The authors propose a transformation approach to
eliminate the fixed effects that yields consistent estimators for regression
parameters when either N or T are large. Yu et al. (2008) and Yu et al.
(2007) have investigated the properties of the quasi-ML estimator of a
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spatialdynamicpanelwithfixedeffects, possiblynon-stationary.Mutl and
Pfaffermayr (2011) consider GMM estimation of fixed effects vs random
effects spatial panel specifications.Hence, theypropose a spatialHausman
test that compares the twomodels, accounting for spatial autocorrelation
in the disturbances.

Following the work by Kelejian and Prucha (1999) and Lee and Liu
(2006a), in this paper we adopt the GMM and consider as moments a
set of quadratic conditions in the disturbances. As in Lee and Liu
(2006a), we assume that the inner matrices in the quadratic forms
have zero diagonal elements to robustify moments against unknown
heteroskedasticity. To eliminate the fixed effects, we transform the
data by applying the demeaning operator. We contribute to the
existing literature on GMM estimator of spatial models in two ways.
First, we investigate the statistical properties of the estimated spatial
autoregressive parameter when data have been transformed by
demeaning operator to get rid of the fixed effects. We show that
consistency and asymptotic normality is achieved for N and/or T going
to infinity. We then carry a small Monte Carlo study to compare the
small sample properties of GMM estimators based on alternative
choices of the inner matrices in the moment conditions and the quasi-
ML estimator. Our results show that the GMM estimator has good
small sample properties when compared to the performance of the
quasi-ML, especially when T is relatively small, and when the spatial
parameter is close to 1. Further, when adopting the inner matrix
suggested by Liu et al. (2006), the GMM estimator performs better
respect to the same estimator based on other quadratic conditions.

In the following, Section 2 sets out the framework of a regression
model with SAR disturbances; Section 3 introduces theGMMestimator;
Section 4 carries a small Monte Carlo exercise; Section 4.2 concludes.

2. The framework

Consider the panel data regression model

yit = αi + β′xit + uit ; i = 1;2;…;N; t = 1;2;…; T ð1Þ

where αi are fixed unknown parameters, and errors are assumed to
follow the SAR process

uit = δ ∑
N

j=1
sijujt + εit ð2Þ

and sij is the (i, j)th element of an N×N spatial weights matrix, S. In
matrix form,

y = 1T⊗αð Þ + Xβ + u; ð3Þ

u = δ IT⊗Sð Þu + ε; ð4Þ

where y = y′1;…; y′T Þ′ð , X = X′1;…;X′T Þ′ð , u = u′1;…;u′T Þ′ð , and ε=
(ε ′1,…,ε′T)′ with yt = y1t ;…; yNtð Þ′,Xt = x1t ;…; xNtð Þ′, ut = u1t ;…;ð
uNtÞ′, and εt=(ε1t,…,εNt)′. 1T is a T-dimensional vector of ones and ⊗
is the Kronecker product. The OLS estimator applied to Eq. (1) yields
the fixed effects (FE) estimator (or within estimator) of β

β̂ = X′ M⊗INð ÞX� �−1X′ M⊗INð Þy ð5Þ

whereM = IT−1T 1′T1T Þ−11T

�
is the matrix that converts yit and xit in

deviations from their individual-specific means.
We make use of the following assumptions:

Assumption 1. εit are independently distributed random variables
with zero mean, variance 0bE(εit2)=σi

2≤σmax
2 b∞, and such that

E εitj j4+η ≤ Kb∞ for some ηN0 and for i=1,2,…,N ; t=1,2,…,T.

Assumption 2. Xt and εt′ are independently distributed for all t and
t′. The elements of X are uniformly bounded constants; as N and/or
T go to infinity the matrix 1

NT X′ M⊗INð ÞX exists and is nonsingular
matrix.

Assumption 3. The main diagonal elements of S are zero. The
row and column norms of the matrices S and R = IN−δSð Þ−1 are
bounded.

Assumption 4. δ∈ [cl, cu], with−∞ b cl, cu b ∞, and IN−δSð Þ−1 is non-
singular for all δ ∈ [cl, cu].

The existence of moments of order higher than four stated in
Assumption 1 is needed for applicability of the central limit theorem by
Kelejian and Prucha (2001). Assumption 2 implies strict exogeneity of
regressors. This assumption rules out the presence of spatial or temporal
lags of the dependent variable among the regressors. However, our
approach can be extended to allow for these cases, by adopting an
instrumental variable approach (Anderson and Hsiao, 1981; Mutl and
Pfaffermayr, 2011). Assumption 4 allows rewriting Eq. (4) as:

u = IT ⊗ Rð Þε; ð6Þ

where R = IN−δSð Þ−1. Under Assumptions 1–4 estimator (5) is un-
biased since

E β̂−β
� �

=
X′ M⊗ INð ÞX

NT

� �−1 X′ M⊗ INð ÞE uð Þ
NT

= 0;

and has variance

Var β̂
� �

= X′ M⊗ INð ÞX� �−1X′ M⊗Rdiag σ2
1;…;σ2

N

n o
R′

� �
×X X′ M⊗ INð ÞX� �−1

:

Noting that, under Assumption 3, λ1(RR′) is bounded inN, we have

Var β̂
� �

=
1
NT

X′ M⊗ INð ÞX
NT

� �−1 X′ M⊗ R diag σ 2
1 ;…;σ 2

N

n o
R′

� �
X

NT
X′ M⊗INð ÞX

NT

� �−1

≤ K
NT

X′ M⊗ INð ÞX
NT

� �−1

= O
1
NT

� 	
;

and the within estimator, β̂, is
ffiffiffiffiffiffiffi
NT

p
-consistent. However, when δ≠0,

β̂ is in general not efficient since the covariance of errors (Eq. (4)) is
non-diagonal and the elements along its main diagonal are not
constant. Efficient estimation of the slope coefficients β can be
achieved by estimating the parameters of Eq. (6) and then computing
the feasible fixed-effects Generalized Least Squares (GLS) of the slope
coefficients (see Qian and Schmidt, 2003 on this). In this paper we are
concerned with consistent estimation of δ via GMM.

In the following, in order to distinguish the true parameters from
other possible values in the parameter space, we denote by β0, δ0, and
σ0i

2 the true parameters, which generate an observed sample.

3. GMM estimation of SAR error models

3.1. Moment conditions

Following Kelejian and Prucha (1999), Lee and Liu (2006a), and
others, for GMM estimation we consider a set of r linear quadratic
conditions in the error term. In a panel data setting, in the presence of
fixed effects, the ℓth population moment condition is

Mℓ δð Þ = 1
NT

E ε� δð Þ′ IT ⊗Aℓ

� �
ε� δð Þ

h i
; ℓ = 1;2;…; r ð7Þ
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