Available online at www.sciencedirect.com

Nuclear Instruments and Methods in Physics Research B 238 (2005) 272-275

www.elsevier.com/locate/nimb

The evolution of the morphology of Ge nanocrystals formed by ion implantation in SiO₂

U.V. Desnica ^{a,*}, P. Dubcek ^a, K. Salamon ^b, I.D. Desnica-Frankovic ^a, M. Buljan ^a, S. Bernstorff ^c, U. Serincan ^d, R. Turan ^d

^a Rudjer Bošković Institute, Physics Department, Bijenicka 54, P.O. Box 180, HR-10000 Zagreb, Croatia ^b Institute of Physics, Zagreb, Croatia ^c Sincrotrone Trieste, Basovizza, Italy ^d Middle East Technical University, Ankara, Turkey

Available online 10 August 2005

Abstract

Grazing incidence small angle X-ray scattering was applied to study the synthesis and growth of Ge quantum dots in Ge-implanted SiO₂. Ge ion doses were up to 10^{17} /cm², and subsequent annealing temperatures up to $T_a = 1000$ °C. Results suggest that ordered and correlated Ge QDs can be achieved by high-dose implantation followed by medium-T annealing.

© 2005 Elsevier B.V. All rights reserved.

PACS: 81.07.-b; 61.10.Eq; 61.46.+w; 68.65.-k; 68.65.Hb; 81.05.Cy

Keywords: Nanocrystals; Quantum dots; X-ray scattering; GISAXS; Implantation; Ge

1. Introduction

Physical properties of Ge nanocrystals or quantum dots (QDs), like tunable absorption, intense photo- and electroluminescence and third-order optical nonlinearities, are strongly dependent on QDs size. This makes them suitable for electronic, optoelectronic and photonic applications, like in sensor technology, for integrated opto-couplers in microsystems in biotechnology, for electronic nonvolatile memories, etc. [1]. Ion implantation offers great flexibility in the QDs formation by control of the process parameters, considerable freedom from thermodynamical limitations and extreme chemical purity [2,3]. Additionally, it enables dense packing of nanocrystals, and is compatible with the conventional silicon-based integrated circuit technology.

^{*} Corresponding author. Tel.: +385 1 4561173; fax: +385 1 4680114.

E-mail address: desnica@irb.hr (U.V. Desnica).

⁰¹⁶⁸⁻⁵⁸³X/\$ - see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.nimb.2005.06.062

In this paper the formation and growth of Ge QDs in the implanted SiO_2 was investigated by means of grazing incidence small angle X-ray scattering (GISAXS), as a function of Ge ion dose and post-implantation annealing temperature.

2. Experimental details

100 keV ⁷⁴Ge⁺ ions were implanted into a 250 nm thick SiO₂ amorphous layer, that was grown on (100) Si substrate by wet oxidation [4]. Samples with doses of 1×10^{17} cm⁻² and 6×10^{16} cm⁻² were annealed at temperatures, T_a , ranging from $T_a = RT$ (not annealed) to 1000 °C, for 1 h in N₂ atmosphere. GISAXS experiments were carried out using X-ray photons of energy E = 8 keV (wavelength, $\lambda = 0.154$ nm) at the Austrian SAXS beamline of the synchrotron radiation facility ELETTRA, Trieste, Italy. The two-dimensional GISAXS patterns were recorded with a 2D CCD detector containing 1024 × 1024 pixels, placed in the *y*-*z* plane, perpendicularly to the specular *x*-*z* plane [3].

3. Results and discussion

The majority of 2D GISAXS patterns comprised of quasi-isotropic, half-rings, example of which is shown in the inset of Fig. 1. This (as well as other, not shown) GISAXS pattern showed quite a symmetric intensity distribution in all directions. These rings are interpreted as scattering from (spherical) Ge QDs; the interference maximum being related to the spatial correlation between isolated Ge QDs embedded in amorphous matrix. The formation of nanoparticles in SiO_2 substrate was confirmed by Raman spectroscopy (appearance of the frequency mode in Raman spectra), while the spherical shape of QDs was established with transmission electron microscopy (TEM) in a few analogously implanted + annealed samples (not shown). They are chemically identified as Ge QDs through the appearance of the characteristic TO mode in Raman spectra and with grazing incidence X-Ray Diffraction in some of these samples (not shown).

Fig. 1. Vertical scans of 2D GISAXS pattern of SiO₂ samples implanted with Ge ion dose $D_1 = 1 \times 10^{17}$ /cm², and annealed at various annealing temperatures for 1 h in N₂. Spectrum of the unimplanted SiO₂ substrate is added for comparison. Annealing temperatures (in °C) are indicated in the figure. Inset (upper): 2D GISAXS pattern of as-implanted sample. Inset (lower): Fits of spectrum of the sample annealed at $T_a = 500$ °C using one size distribution (dashed line) and two size distributions (full line).

Fig. 1. shows one-dimensional (1D) GISAXS plots obtained by cross-sectioning 2D pattern parallel to the z-axis close to the beam-stopper, for samples implanted with the same Ge ion dose $D_1 = 10^{17}/\text{cm}^2$, but annealed at different annealing temperatures. By applying traditional analysis, the radius of gyration, R_g , of QDs was estimated from the so called Guinier plot, and the average interparticle distance, L from the curve maximum positions (Table 1). A strong half ring was present in the 2D GISAXS spectrum of as-implanted sample (inset of Fig. 1) showing that QDs were formed

Download English Version:

https://daneshyari.com/en/article/9817666

Download Persian Version:

https://daneshyari.com/article/9817666

Daneshyari.com