
Acta Astronautica 57 (2005) 97–103

www.elsevier.com/locate/actaastro

AxisymmetricMarangoni convection inmicroencapsulation

Pravin Subramaniana,∗, Abdelfattah Zebiba, Barry McQuillanb
aMechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854, USA

bGeneral Atomics, San Diego, CA 85608, USA

Available online 21 April 2005

Abstract

Spherical shells used as laser targets in inertial confinement fusion (ICF) experiments are made by microencapsulation. In
one phase of manufacturing, the spherical shells contain a solvent (fluorobenzene (FB)) and a solute (polystyrene (PAMS))
in a water–FB environment. Evaporation of the FB results in the desired hardened plastic hollow spherical shells, 1–2mm
in diameter. Perfect sphericity is demanded for efficient fusion ignition and the observed surface roughness maybe driven
by Marangoni instabilities due to surface tension dependence on the FB concentration (buoyant forces are negligible in this
micro-scale problem). Here we model this drying process and compute nonlinear, time-dependent, axisymmetric, variable
viscosity, infinite Schmidt number solutocapillary convection in the shells. Comparison with results from linear theory and
available experiments are made.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Successful ICF experiments require high and spher-
ically uniform laser energies which are absorbed by
spherical fuel capsules made of a plasma polymer[1].
The compression of the fuel must be uniform and per-
turbations on the inner capsule wall would grow during
implosion due to Rayleigh–Taylor instabilities. The re-
sulting mixing of the polymer and fuel degrades the
fusion ignition. Manufacturing of 1mm fuel targets[2]
has been achieved by microencapsulation (seeFig. 1)
to produce hollow PAMS mandrels. These mandrels
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are then coated with the plasma polymer. Heat treat-
ment decomposes the PAMS which diffuses through
the plasma polymer coating leaving behind the desired
target hollow shells. McQuillan[3] has demonstrated
that Marangoni instabilities driven by surface tension
dependence of the FB concentration are the cause
of outer surface deformations and deviation from
sphericity observed with 2mm shells. McQuillan and
Takagi[4] were able to prevent the formation of sur-
face ripples in 1–2mm mandrels by manipulating the
prevailing Marangoni numbers in the experiments.
These Marangoni instabilities can cause more and
serious bumps during the manufacturing of planned
larger spherical targets. Hence, it is essential to study
the hydrodynamics of the convective patterns which
develop in the spherical shells during the drying
process.
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Fig. 1. Sketch of microencapsulation. Flows through the capillaries
of the generator produce droplets of water, surrounded by a mixture
of FB and PAMS, and suspended in an aqueous solution. The
FB is removed by evaporation over several hours/days leaving a
cured solid PAMS shell. The water droplet is then later removed
by osmosis into ethanol.

The pattern of motion realized in a convectively un-
stable system with spherical symmetry can be consid-
ered without reference to the physical details of the
system. Numerous theories have been developed over
the years to study the heat transfer in the mantles of
terrestrial planetary interiors which occurs by convec-
tion [5]. Busse[6] studied the patterns of nonlinear
convection in a homogeneous fluid contained between
two concentric spherical boundaries assuming a spher-
ically symmetric gravity force and distribution of heat
sources. Nonlinear axisymmetric convective motions
of self-gravitating, infinite Prandtl number fluids in
spheres and spherical shells for different modes of
heating were modeled by Zebib et al.[7]. A theoreti-
cal study of the linear and weakly nonlinear variable
viscosity convection in spherical shells with an infi-
nite Prandtl number fluid and two modes of heating
was also performed by Zebib[8]. Three-dimensional
steady thermal convection of an infinite Prandtl num-
ber, Boussinesq fluid with temperature-dependent vis-
cosity was examined by Ratcliff et al.[9]. Linear sta-
bility analysis of the Marangoni mechanism in spher-
ical shells during microencapsulation was considered
by Subramanian et al.[10,11]. In the present paper, we
study nonlinear axisymmetric convection in the shells
assuming infinite Schmidt number.

2. Mathematical model

We consider a spherical shell of initial thickness
Lr =R∗
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and initial outer radii, respectively. The aspect ratio of
the shell is� = R∗
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<1 (all starred quantities are
dimensional). The inner boundary is assumed stress
free and impermeable, while nonlinear boundary con-
ditions are prescribed at the moving outer boundary.
The shell contains a mixture of a solvent and a so-
lute with concentrationsC∗ and(1−C∗), respectively.
The ambient is a mixture of the solvent and water into
which the solvent is evaporating. Thus, there is a net
mass flux across the receding outer surface.
The physical quantities are nondimensionalized

with respect to�r, �r, �r, Dr, Lr, tr = L2
r /Dr, Cr,

Dr/Lr, Pr = �r/tr for density, dynamic viscosity,
kinematic viscosity, mass diffusivity, length, time,
concentration, velocity, and pressure, respectively. We
assume linear variation of interfacial tension�∗ with
concentrationC∗ according to�∗ = �r − �(C∗ − Cr),
where subscript r designates a reference state. The
Capillary numberCa= ��/�̄ = (�̄ − �r)/�̄ = �Cr/�̄.
Here, �̄ = �r + �Cr and � = −d�∗/dC∗. Relevant
nondimensional quantities are: the mass transfer Biot
numberBi = KLr/�rDr based on an assumed mass
transfer coefficientK which is taken as constant, the
Reynolds numberRe=�CrLr/�r�r and the Marangoni
number Ma = Re Sc, where the Schmidt number
Sc= �r/Dr is about 106 and is assumed infinite in our
nonlinear model.
In the limit of Ca → 0 considered here, it was

shown [11] that theO(1) outer surface is a perfect
spherer2 = r2d(t) determined by the diffusive state,
while deviations from sphericity areO(Ca). The dif-
fusive state is the solution of the nonlinear dimension-
less system:
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with initial conditionC(r,0) = 1. The boundary con-
ditions derived from conservation of the solute and
solvent are
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(r1, t) = 0 (2)
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