

Available online at www.sciencedirect.com

JOURNAL OF CRYSTAL GROWTH

Journal of Crystal Growth 281 (2005) 407-410

www.elsevier.com/locate/jcrysgro

Growth, structure and morphology study of monoclinic RbGd(WO₄)₂ crystals

Kunpeng Wang, Jianxiu Zhang, Jiyang Wang*, Wentao Yu, Huaijin Zhang, Xuping Wang, Zhengping Wang, Mingfang Ba

State Key Lab of Crystal Materials of Shandong University, 250100, China

Received 28 December 2004; accepted 10 April 2005 Available online 17 May 2005 Communicated by K. Nakajima

Abstract

The undoped rubidium gadolinium bis(tungstate) crystals, RbGd(WO₄)₂ (RGW), have been grown by the spontaneous nucleation from high-temperature solutions. The crystal structure has been refined at room temperature by using single-crystal X-ray diffraction data. The unit-cell parameters are a = 10.6953(12) Å, b = 10.5017(11) Å, c = 7.6064(11) Å, $\beta = 130.504(7)^{\circ}$, with Z = 4 in space group C2/c, which is a little difference with KGd(WO₄)₂. Crystal habits were predicted by the attachment energy model of Hartman and Perdok and we compared predictions to experimentally grown crystal shapes.

© 2005 Elsevier B.V. All rights reserved.

PACS: 42.70.Hj; 78.20.-e

Keywords: A1. Structure and morphology; A2. Crystal growth; A2. RbGd(WO₄)₂ crystals; B1. Double tungstates

1. Introduction

Monoclinic double tungstate single crystals, with chemical formula KRE(WO₄)₂, RE being the rare earths, are currently receiving attention as hosts for self-induced frequency shifting [1–3]. The low-temperature phase of the potassium gadoli-

*Corresponding author. Tel.: 865316832632; fax: 865318364451.

E-mail address: pengwan1545@yahoo.com.cn (J. Wang).

nium tungstate, KGd(WO₄)₂, is a promising laser material and has been extensively studied [4–6]. On the other hand, RbGd(WO₄)₂, which has KGd(WO₄)₂-related structure, is, to our knowledge, rarely studied up to now [7,8]. Similar to KGd(WO₄)₂, RbGd(WO₄)₂ has polymorph transitions under the melting point, so it is impossible to grow this crystal directly from melt, and we grew the crystal by spontaneous crystallization from high-temperature solution. In this paper, we present the growth and structural determination

of the RbGd(WO₄)₂ crystals. And we compared predictions to experimentally grown crystal shapes.

2. RGW single-crystal growth and X-ray photoelectron spectrograph analyze

RbGd(WO₄)₂ single crystals were grown by spontaneous nucleation technique from hightemperature solutions, using Rb₂W₂O₇ as solvent. The solution composition of 20 mol% of solute and 80% of solvent was chosen. The solutions used in the crystal growth experiments, weighing about 180 g, were prepared in a cylindrical Pt crucible, 50 mm in diameter, by melting and decomposing the appropriated quantities of Gd₂O₃, Rb₂O₃, and WO₃. The homogenization of the solutions was achieved by maintaining them at about 50 °C above the expected saturation temperature for 24 h. Then the solution temperature was decreased at a rate of 2-5 °C/day. RGW crystals with dimensions $\sim 3 \times 1.5 \times 1 \text{ mm}^3$ along c, b and a* directions, respectively, were taken out after the room temperature was reached. The representational grown crystal is shown in Fig. 1a. We powdered some single crystals in an agate mortar and made elementary analysis on PERKIN ELEMER PHI-1600 ESCA System. The X-ray photoelectron spectrograph (shown in Fig. 2) showed that the atomic ratios in the powder are 38.5%(O), 10.5%(W), 6.3%(Rb), 4.4%(Gd) and 40.3%(C). The existance of carbon in RGW crystals is due to the absorption of the CO₂ on the sample surface and the contamination of carbon oil on the instrument. Without taking into account the carbon the atomic ratios will be 64.5%(O), 17.6%(W), 10.6%(Rb), 7.4%(Gd), yielding the actual ratio of Rb:Gd:O:W equal to 1:1:8:2 within the experimental errors.

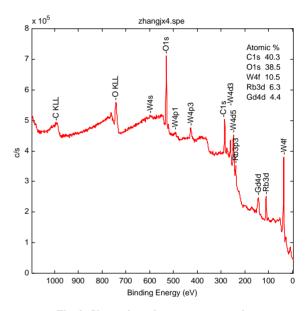
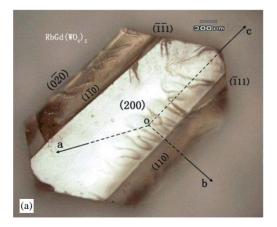



Fig. 2. X-ray photoelectron spectrograph.

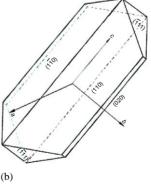


Fig. 1. (a) The as-grown representational RGW crystal with sizes $\sim 3 \times 1.5 \times 1 \text{ mm}^3$. (b) The crystal habit generated using a Wulff plot from the list of faces and center-to-face distances shown in Table 4.

Download English Version:

https://daneshyari.com/en/article/9829565

Download Persian Version:

https://daneshyari.com/article/9829565

Daneshyari.com