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In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods consid-
ered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to spatialmodels that impose a spatialmoving average pro-
cess for the disturbance term. First, we determine the set of best linear and quadraticmoment functions for GMM
estimation. Second, we show that the optimal GMM estimator (GMME) formulated from this set is the most ef-
ficient estimator within the class of GMMEs formulated from the set of linear and quadratic moment functions.
Our analytical results show that the one-step GMME can be more efficient than the quasi maximum likelihood
(QMLE), when the disturbance term is simply i.i.d. With an extensive Monte Carlo study, we compare its finite
sample properties against the MLE, the QMLE and the estimators suggested in Fingleton (2008a).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Spatial econometrics models that have a long history in regional,
urban and public economics have recently found many applications in
macro growth models. These models enable researchers to incorporate
spatial dependence among observations into economic analysis. Spatial
dependence is a special form of cross-sectional dependence that is de-
termined by locations of observations in space, and is often incorporat-
ed into regression specifications in three ways: (i) spatial lag (SAR)
model, (ii) spatial error (SEM) model, and the combination of (i) and
(ii). The SAR specification involves an autoregressive (AR) process for
the spatial lags of the dependent variable such that the dependent var-
iable at a point in space depends on the dependent variables of the sur-
rounding locations. An equilibrium outcome of a theoretical economic
model of interacting spatial units often motivates the SAR specification.

The SEM specification incorporates the AR process for the spatial lags of
the disturbance term. The spatial dependencemay stem frommeasure-
ment errors that tend to vary systematically over space.

A well-known feature of the AR process is that it allows for a global
transmission of shocks through global spillovers that agglomerate from
higher order neighbors (Anselin, 1988; LeSage and Pace, 2009). Howev-
er, the AR specification may not be appropriate, if there is strong evi-
dence towards localized transmission of shocks, i.e., shocks that are
not transmitted globally. For example, thefindings in the empirical liter-
ature about the diffusion of technology indicate that the diffusion is
more localized in the sense that the productivity effects of innovations
decline with the geographical distance between countries (Bottazzi
and Peri, 2003; Keller, 2002). Hence, an alternative specification that al-
lows for a localized transmission of shocks is needed. Haining (1978),
Anselin (1988) and recentlyHepple (2003), Fingleton (2008a,b) consid-
er a spatial moving average process for the disturbances. Following
Baltagi and Liu (2011), we will refer to this model as the spatial moving
average (SMA) model. As pointed out by these authors, applied re-
searchers sometimes need to treat the transmission of shocks as a
local phenomenon. Alternatively, researchers may just be interested in
local effects arising from immediate neighbors.

Anselin and Bera (1998) suggest a spatial regression specification
(i.e., SARMA) that combines the SMA process for the disturbances and
a SAR process for the dependent variable. For example, pollution in a
certain location can be modeled as a function not only of the local
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income, but also of the income of the neighbors, and their neighbors'
neighbors, and so on. In other words, spillovers travel throughout the
whole system and are not limited to the immediate neighbors. Contrari-
ly, the unobserved factors that are affecting pollution in that location are
bounded to a small local neighborhood. Behrens et al. (2012) use a
SARMA(1,1) specification tomodel bilateral trade flows between regions
based on a dual version of the gravity equation. This specification allows
to take into account the interdependence between trade flows through a
spatial autoregressive process for the trade flows. Hence, the trade flows
from a region to a destination region depend on all the trade flows from
the other regions to the destination region. Behrens et al. (2012) consid-
er a spatial moving average process for the disturbance term to model
the cross-sectional correlation among disturbance terms.1 The combina-
tion of the spatial autoregressive process for the trade flows and the spa-
tial moving average process for the unobserved factors induces a
complicated pattern for the transmission of a region specific shock to
other regions. In comparison with a SARAR(1,1) specification, the effect
of a region specific shock is heavily concentrated on the immediate
neighbors in a SARMA(1,1) specification.

The spatial econometrics literature has mainly focused on the esti-
mators proposed for the estimation of the models that assume a SAR
process for the spatial dependence in the disturbance term (Das et al.,
2003; Kelejian and Prucha, 1998, 1999, 2010; Lee, 2003, 2004, 2007a,
b; Liu et al., 2010). Themaximum likelihood (ML)method has received
the most attention (Anselin, 1988; LeSage and Pace, 2009). However,
the large sample properties of the maximum likelihood estimator
(MLE) and the quasi MLE (QMLE) have recently been established by
Lee (2004) only formodelswith spatial AR dependence. TheML estima-
tion can involve a significant computational difficulty for certain weight
matrices, when the sample size is large.2 On the other hand, the gener-
alized method of moments (GMM) and instrumental variable (IV)
methods are proven to be computationally more feasible than the ML
method. Various two stage least squares estimators (2SLSE) corre-
sponding to the different sets of instrumental variables have been pro-
posed by Anselin (1988), Kelejian and Prucha (1998, 1999, 2007, 2010),
and Lee (2003, 2007a). The structure of spatial regression specification
determines the possible instruments, which are often constructed from
exogenous variables and spatial weight matrices.

Kelejian and Prucha (1998, 1999, 2010) propose a multi-step esti-
mator (GS2SLSE) that involves a combination of the IV and the GMM
methods for the spatial model that has a spatial autoregressive process
in the dependent variable and the disturbances (SARAR(1,1)). First, an
initial estimate of the parameters of the exogenous variables and the
autoregressive parameter of the spatial lag of the dependent variable
are estimated by the 2SLSE. Then, the residuals from the first step are
used to estimate the autoregressive parameter of the spatial lag of the
disturbance term by the GMME formulated from a combination of a
set of quadratic moment functions. In the final step, the parameters
are estimated by the 2SLSE, after transforming the model via a
Cochrane–Orcut type transformation to account for the spatial correla-
tion. However, the estimation approach in Kelejian and Prucha (1998)
is inefficient relative to the ML method (Prucha, 2012). To increase the
efficiency, Lee (2007a,b), Liu et al. (2010), and Lee and Liu (2010) sug-
gest one-step GMM estimators involving sets of moment functions
that are linear and quadratic in disturbance terms. The linear moment
functions are based on the deterministic part of the spatial lag term
and the quadratic moment functions are constructed for exploiting the
stochastic part of the spatial lag variable (i.e., the endogenous variable).

The quadratic moment functions are chosen in such a way that the
resulting one-step GMME can be asymptotically equivalent to the
MLE, when disturbances are i.i.d. normal.

The spatial moving average model introduces a different interaction
structure. Therefore, it is of interest to investigate the implications of a
moving average process for estimation and testing issues. Recently,
Fingleton (2008a, 2008b) extends the GMM methodology of Kelejian
and Prucha (1998) to a SARMA(1,1) specification. Although the finite
sample properties of GS2SLSE are explored in detail for the
SARMA(1,1) model, the asymptotic properties are not provided.
(Baltagi and Liu, 2011) introduce the estimation approach of Kelejian
and Prucha (1998, 1999) to the case of SARMA(0,1) specification in
the light of the improvement suggested by Arnold and Wied (2010).
The asymptotic distribution of the estimator of the spatial moving aver-
age parameter is not provided in both Fingleton (2008a) and Baltagi and
Liu (2011). Recently, Kelejian and Prucha (2010) and Drukker et al.
(2013) provide a basic theorem regarding the asymptotic distribution
of their estimator under fairly general conditions. The estimation ap-
proach suggested in Kelejian and Prucha (2010) and Drukker et al.
(2013) is characterized as a two-step GMM estimator and can easily
be adapted for the estimation of the SARMA(1,1) and SARMA(0,1)
models. Finally, although the Kelejian and Prucha approach in
Fingleton (2008a) and Baltagi and Liu (2011) has computational advan-
tage, it may be inefficient relative to the ML method.3

In this study, we extend the one-step GMM methodology proposed
by Lee (2007a) and Liu et al. (2010) to the spatial models that have a
moving average process in the disturbance term. For the SARMA(0,1)
and SARMA(1,1) specifications, we consider the class of optimal GMM
estimators that are formulated from a set of moment functions involv-
ing both linear and quadratic moment functions. The best GMME
(BGMME)within this class is the one that has the highest asymptotic ef-
ficiency. We determine the set of the moment functions for both
SARMA(0,1) and SARMA(1,1) specifications that leads to the most effi-
cient GMME, i.e., the BGMME. Along the same line of arguments in
Breusch et al. (1999), we show that this set of moment functions is
the best one in the sense that any other moment function that can be
added to this set does not increase the asymptotic efficiency. Finally,
through a Monte Carlo study, the finite sample properties of the
BGMME are compared with the MLE, the QMLE and the GS2SLSE. Also,
we replicate the empirical results of Behrens et al. (2012) for the
SARMA(1,1) specification to evaluate the performance of estimators in
an applied research.

This paper is organized as follows. Section 2 elaborates further on
the SAR and the SMA disturbance processes. Section 3 presents the
model assumptions and their implications. Sections 4 and 5 discuss
the GMM estimation of the SARMA(0,1) and the SARMA(1,1) specifica-
tions and propose the best moment functions alongwith the large sam-
ple properties of the GMME. The Monte Carlo study and the empirical
illustration are carried out in Sections 6 and 7, respectively. Finally,
there are concluding remarks. All technical results and derivations are
collected in a web appendix available online.

2. Spatial dependence specifications for the disturbance term

In the literature, three parametric specifications have been proposed
to model the spatial dependence in the disturbance term: (i) the spatial
autoregressive process (SAR), (ii) the spatial moving average process
(SMA), and (iii) the spatial error components (SEC) process. In this sec-
tion, we briefly show the implications of these specifications in terms of

1 For details, see Section 7.
2 The likelihood involves the determinant of amatrix, whose dimensions depend on the

sample size. For further information, see Das et al. (2003), Kelejian and Prucha (1998,
2010).

3 Fingleton (2008a) and Baltagi and Liu (2011) do not compare the finite sample effi-
ciency of their estimators with the MLE.
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